Mixed hp-DGFEM for Incompressible Flows

We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework, we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete divergence bilinear form.

[1]  Ohannes A. Karakashian,et al.  A Nonconforming Finite Element Method for the Stationary Navier--Stokes Equations , 1998 .

[2]  R. Rannacher,et al.  Finite Element Solution of the Incompressible Navier-Stokes Equations on Anisotropically Refined Meshes , 1995 .

[3]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[4]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[5]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[6]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[7]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[8]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[9]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[10]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[11]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[12]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[13]  Ilaria Perugia,et al.  An hp-Analysis of the Local Discontinuous Galerkin Method for Diffusion Problems , 2002, J. Sci. Comput..

[14]  R. Stenberg,et al.  Mixed $hp$ finite element methods for problems in elasticity and Stokes flow , 1996 .

[15]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[16]  Mark Ainsworth,et al.  hp-Approximation Theory for BDFM and RT Finite Elements on Quadrilaterals , 2002, SIAM J. Numer. Anal..

[17]  F. Brezzi,et al.  Discontinuous Galerkin approximations for elliptic problems , 2000 .

[18]  Andrea Toselli,et al.  HP DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE STOKES PROBLEM , 2002 .

[19]  Andrea Toselli,et al.  Mixed HP-finite element approximations on geometric edge and boundary layer meshes in three dimensions , 2003, Numerische Mathematik.

[20]  A. Quarteroni,et al.  Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .

[21]  Dominik Schötzau,et al.  Mixed hp - FEM on anisotropic meshes , 1998 .

[22]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[23]  Paola Gervasio,et al.  Stabilized spectral element approximation for the Navier–Stokes equations , 1998 .

[24]  Bernardo Cockburn,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[25]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[26]  Rolf Stenberg,et al.  Mixed hp-FEM on anisotropic meshes II: Hanging nodes and tensor products of boundary layer meshes , 1999, Numerische Mathematik.

[27]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[28]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[29]  Endre Süli,et al.  hp-DGFEM on Shape-Irregular Meshes: Reaction-Diffusion Problems , 2001 .

[30]  Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptical Problems Part I. Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptic Problems , 1999 .

[31]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[32]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[33]  Clint Dawson,et al.  Some Extensions Of The Local Discontinuous Galerkin Method For Convection-Diffusion Equations In Mul , 1999 .

[34]  L. Franca,et al.  Error analysis of some Galerkin least squares methods for the elasticity equations , 1991 .

[35]  Ilaria Perugia,et al.  The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations , 2003, Math. Comput..

[36]  B. Rivière,et al.  Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .

[37]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .