Dual Intuitionistic Linear Logic

We present a new intuitionistic linear logic, Dual Intuitionistic Linear Logic, designed to reflect the motivation of exponentials as translations of intuitionistic types, and provide it with a term calculus, proving associated standard type-theoretic results. We give a sound and complete categorical semantics for the type-system, and consider the relationship of the new type-theory to the more familiar presentation found for example in [4].

[1]  Philip Wadler,et al.  Linear logic, monads and the lambda calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[2]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[3]  Gordon D. Plotkin,et al.  Type theory and recursion , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[4]  Nick Benton,et al.  A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract) , 1994, CSL.

[5]  Gavin M. Bierman What is a Categorical Model of Intuitionistic Linear Logic? , 1995, TLCA.

[6]  H.A.J.M. Schellinx,et al.  The noble art of linear decorating , 1994 .

[7]  Jean-Yves Girard,et al.  On the Unity of Logic , 1993, Ann. Pure Appl. Log..

[8]  Philip Wadler,et al.  A Syntax for Linear Logic , 1993, MFPS.

[9]  Nick Benton,et al.  A Term Calculus for Intuitionistic Linear Logic , 1993, TLCA.

[10]  Philip Wadler,et al.  There's No Substitute for Linear Logic , 1991 .

[11]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[12]  Nick Benton,et al.  Linear Lambda-Calculus and Categorial Models Revisited , 1992, CSL.