Computing closed form solutions of integrable connections

We present algorithms for computing rational and hyperexponential solutions of linear D-finite partial differential systems written as integrable connections. We show that these types of solutions can be computed recursively by adapting existing algorithms handling ordinary linear differential systems. We provide an arithmetic complexity analysis of the algorithms that we develop. A Maple implementation is available and some examples and applications are given.

[1]  Moulay A. Barkatou,et al.  On the Moser- and super-reduction algorithms of systems of linear differential equations and their complexity , 2009, J. Symb. Comput..

[2]  Ziming Li,et al.  Factoring systems of linear PDEs with finite-dimensional solution spaces , 2003, J. Symb. Comput..

[3]  Moulay A. Barkatou FACTORING SYSTEMS OF LINEAR FUNCTIONAL EQUATIONS USING EIGENRINGS , 2007 .

[4]  T. Cluzeau,et al.  Factoring and decomposing a class of linear functional systems , 2008 .

[5]  Moulay A. Barkatou,et al.  Simple forms of higher-order linear differential systems and their applications in computing regular solutions , 2011, J. Symb. Comput..

[6]  G. Letac,et al.  Meixner Matrix Ensembles , 2010, 1009.4653.

[7]  Moulay A. Barkatou,et al.  Rational Newton Algorithm for Computing Formal Solutions of Linear Differential Equations , 1988, ISSAC.

[8]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[9]  Jacques-Arthur Weil,et al.  Factoring Partial Differential Systems in Positive Characteristic , 2005 .

[10]  Min Wu,et al.  On solutions of linear functional systems and factorization of modules over Laurent-Ore algebras , 2005 .

[11]  Moulay A. Barkatou,et al.  On Rational Solutions of Systems of Linear Differential Equations , 1999, J. Symb. Comput..

[12]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[13]  Carole El Bacha Méthodes algébriques pour la résolution d’équations différentielles matricielles d’ordre arbitraire , 2011 .

[14]  Frédéric Chyzak,et al.  An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..

[15]  Ziming Li,et al.  A recursive method for determining the one-dimensional submodules of Laurent-Ore modules , 2006, ISSAC '06.

[16]  T. Oaku,et al.  Polynomial and rational solutions of holonomic systems , 2000 .

[17]  Eckhard Pflügel,et al.  An algorithm for computing exponential solutions of first order linear differential systems , 1997, ISSAC.

[18]  Moulay A. Barkatou,et al.  An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system , 2009, Applicable Algebra in Engineering, Communication and Computing.

[19]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[20]  E. Kolchin Differential Algebra and Algebraic Groups , 2012 .

[21]  Mark van Hoeij,et al.  A modular algorithm for computing the exponential solutions of a linear differential operator , 2004, J. Symb. Comput..

[22]  Dima Grigoriev,et al.  Complexity of irreducibility testing for a system of linear ordinary differential equations , 1990, ISSAC '90.