Computing closed form solutions of integrable connections
暂无分享,去创建一个
Moulay A. Barkatou | Thomas Cluzeau | Jacques-Arthur Weil | Carole El Bacha | Jacques-Arthur Weil | T. Cluzeau | M. Barkatou
[1] Moulay A. Barkatou,et al. On the Moser- and super-reduction algorithms of systems of linear differential equations and their complexity , 2009, J. Symb. Comput..
[2] Ziming Li,et al. Factoring systems of linear PDEs with finite-dimensional solution spaces , 2003, J. Symb. Comput..
[3] Moulay A. Barkatou. FACTORING SYSTEMS OF LINEAR FUNCTIONAL EQUATIONS USING EIGENRINGS , 2007 .
[4] T. Cluzeau,et al. Factoring and decomposing a class of linear functional systems , 2008 .
[5] Moulay A. Barkatou,et al. Simple forms of higher-order linear differential systems and their applications in computing regular solutions , 2011, J. Symb. Comput..
[6] G. Letac,et al. Meixner Matrix Ensembles , 2010, 1009.4653.
[7] Moulay A. Barkatou,et al. Rational Newton Algorithm for Computing Formal Solutions of Linear Differential Equations , 1988, ISSAC.
[8] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[9] Jacques-Arthur Weil,et al. Factoring Partial Differential Systems in Positive Characteristic , 2005 .
[10] Min Wu,et al. On solutions of linear functional systems and factorization of modules over Laurent-Ore algebras , 2005 .
[11] Moulay A. Barkatou,et al. On Rational Solutions of Systems of Linear Differential Equations , 1999, J. Symb. Comput..
[12] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[13] Carole El Bacha. Méthodes algébriques pour la résolution d’équations différentielles matricielles d’ordre arbitraire , 2011 .
[14] Frédéric Chyzak,et al. An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..
[15] Ziming Li,et al. A recursive method for determining the one-dimensional submodules of Laurent-Ore modules , 2006, ISSAC '06.
[16] T. Oaku,et al. Polynomial and rational solutions of holonomic systems , 2000 .
[17] Eckhard Pflügel,et al. An algorithm for computing exponential solutions of first order linear differential systems , 1997, ISSAC.
[18] Moulay A. Barkatou,et al. An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system , 2009, Applicable Algebra in Engineering, Communication and Computing.
[19] Bruno Salvy,et al. Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..
[20] E. Kolchin. Differential Algebra and Algebraic Groups , 2012 .
[21] Mark van Hoeij,et al. A modular algorithm for computing the exponential solutions of a linear differential operator , 2004, J. Symb. Comput..
[22] Dima Grigoriev,et al. Complexity of irreducibility testing for a system of linear ordinary differential equations , 1990, ISSAC '90.