CORONAL FOURIER POWER SPECTRA: IMPLICATIONS FOR CORONAL SEISMOLOGY AND CORONAL HEATING

The dynamics of regions of the solar corona are investigated using Atmospheric Imaging Assembly 171 A and 193 A data. The coronal emission from the quiet Sun, coronal loop footprints, coronal moss, and from above a sunspot is studied. It is shown that the mean Fourier power spectra in these regions can be described by a power law at lower frequencies that tails to a flat spectrum at higher frequencies, plus a Gaussian-shaped contribution that varies depending on the region studied. This Fourier spectral shape is in contrast to the commonly held assumption that coronal time series are well described by the sum of a long timescale background trend plus Gaussian-distributed noise, with some specific locations also showing an oscillatory signal. The implications of the observed spectral shape on the fields of coronal seismology and the automated detection of oscillations in the corona are discussed. The power-law contribution to the shape of the Fourier power spectrum is interpreted as being due to the summation of a distribution of exponentially decaying emission events along the line of sight. This is consistent with the idea that the solar atmosphere is heated everywhere by small energy deposition events.

[1]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[2]  V. Nakariakov,et al.  TRACE observation of damped coronal loop oscillations: implications for coronal heating , 1999, Science.

[3]  E. Parker Nanoflares and the solar X-ray corona , 1988 .

[4]  D. King,et al.  Coronal Periodmaps , 2007 .

[5]  Markus J. Aschwanden,et al.  Self-Organized Criticality in Astrophysics , 2011 .

[6]  P. Cargill,et al.  ENTHALPY-BASED THERMAL EVOLUTION OF LOOPS. II. IMPROVEMENTS TO THE MODEL , 2012, 1204.5960.

[7]  R. T. J. McAteer,et al.  Waves and wavelets: An automated detection technique for solar oscillations , 2004 .

[8]  James A. Klimchuk,et al.  On Solving the Coronal Heating Problem , 2006 .

[9]  B. Dennis,et al.  ESTIMATING THE PROPERTIES OF HARD X-RAY SOLAR FLARES BY CONSTRAINING MODEL PARAMETERS , 2013, 1304.8117.

[10]  R. Erdélyi,et al.  How to Channel Photospheric Oscillations into the Corona , 2005 .

[11]  REMOTE OSCILLATORY RESPONSES TO A SOLAR FLARE , 2013, 1306.3475.

[12]  K. Korreck,et al.  DETECTING NANOFLARE HEATING EVENTS IN SUBARCSECOND INTER-MOSS LOOPS USING Hi-C , 2013 .

[13]  Application of the Information Criterion to the Estimation ofGalaxy Luminosity Function , 1999, astro-ph/9909324.

[14]  R. Sych,et al.  The Pixelised Wavelet Filtering Method to Study Waves and Oscillations in Time Sequences of Solar Atmospheric Images , 2008 .

[15]  G. R. Gupta Observations of Dissipation of Slow Magneto-acoustic Waves in a Polar Coronal Hole , 2014, 1407.1017.

[16]  T. Kucera,et al.  Automated Detection of Oscillating Regions in the Solar Atmosphere , 2010, 1007.0975.

[17]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[18]  Carolus J. Schrijver,et al.  Coronal Loop Oscillations Observed with the Transition Region and Coronal Explorer , 1999 .

[19]  B. Pontieu,et al.  Forward modeling of emission in SDO/AIA passbands from dynamic 3D simulations , 2011, 1109.0704.

[20]  Institute of Theoretical Astrophysics,et al.  OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS , 2013, 1305.1687.

[21]  V. Nakariakov,et al.  Magnetohydrodynamic waves and coronal seismology: an overview of recent results , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  C. J. Wolfson,et al.  The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .

[23]  Observations of Hα Intensity Oscillations in a Flare Ribbon , 2005 .

[24]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[25]  R. Erdélyi,et al.  Intensity Oscillations in the Upper Transition Region above Active Region Plage , 2003 .

[26]  J. Ireland,et al.  The heating of the solar corona , 2003 .

[27]  Alessandro Bemporad,et al.  Low-Frequency Lyα Power Spectra Observed by UVCS in a Polar Coronal Hole , 2008 .

[28]  F. Auchere,et al.  Long-period intensity pulsations in the solar corona during activity cycle 23 , 2013, 1312.3792.

[29]  V. Grechnev A method to analyze imaging radio data on solar flares , 2003 .

[30]  B. De Pontieu,et al.  QUASI-PERIODIC PROPAGATING SIGNALS IN THE SOLAR CORONA: THE SIGNATURE OF MAGNETOACOUSTIC WAVES OR HIGH-VELOCITY UPFLOWS? , 2010, 1008.5300.

[31]  B. De Pontieu,et al.  THE SPECTROSCOPIC SIGNATURE OF QUASI-PERIODIC UPFLOWS IN ACTIVE REGION TIMESERIES , 2010, 1012.5112.

[32]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[33]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[34]  A. Vecchio,et al.  Evidence of Shock-driven Turbulence in the Solar Chromosphere , 2008, 0809.4243.

[35]  D. S. Bloomfield,et al.  High-frequency oscillations in a solar active region observed with the RAPID DUAL IMAGER , 2007, 0707.2716.

[36]  K. McClements,et al.  Propagating EUV disturbances in the solar corona : two-wavelength observations , 2003 .

[37]  P. Cargill,et al.  Highly Efficient Modeling of Dynamic Coronal Loops , 2005, 0710.0185.

[38]  I. Moortel,et al.  The detection of 3 & 5 min period oscillations in coronal loops , 2002 .

[39]  B. Pontieu,et al.  A Coherence-Based Approach for Tracking Waves in the Solar Corona , 2008, 0808.2978.

[40]  S. Vaughan,et al.  A Bayesian test for periodic signals in red noise , 2009, 0910.2706.

[41]  Durgesh Tripathi,et al.  SDO/AIA response to coronal hole, quiet Sun, active region, and flare plasma , 2010 .

[42]  Joseph B. Gurman,et al.  Observation of Quasi-periodic Compressive Waves in Solar Polar Plumes , 1998 .