Anaerobic oxidation of methane does not attenuate methane emissions from thermokarst lakes

[1]  Q. Jin,et al.  Controls on the isotopic composition of microbial methane , 2021, bioRxiv.

[2]  M. Wooller,et al.  Metabolic flexibility of aerobic methanotrophs under anoxic conditions in Arctic lake sediments , 2021, The ISME Journal.

[3]  J. Russell,et al.  Organic matter mineralization in modern and ancient ferruginous sediments , 2021, Nature Communications.

[4]  F. Meyer,et al.  Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw , 2020, Environmental Research Letters.

[5]  G. Grosse,et al.  A synthesis of methane dynamics in thermokarst lake environments , 2020, Earth-Science Reviews.

[6]  A. Thurber,et al.  Riddles in the cold: Antarctic endemism and microbial succession impact methane cycling in the Southern Ocean , 2020, Proceedings of the Royal Society B.

[7]  N. Tananaev,et al.  Anaerobic oxidation of methane and associated microbiome in anoxic water of Northwestern Siberian lakes. , 2020, The Science of the total environment.

[8]  D. Lawrence,et al.  Carbon release through abrupt permafrost thaw , 2020 .

[9]  William A. Walters,et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 , 2019, Nature Biotechnology.

[10]  F. Horn,et al.  First evidence for cold-adapted anaerobic oxidation of methane in deep sediments of thermokarst lakes , 2019, Environmental Research Communications.

[11]  N. Balagurusamy,et al.  Electron shuttling mediated by humic substances fuels anaerobic methane oxidation and carbon burial in wetland sediments. , 2019, The Science of the total environment.

[12]  K. W. Anthony,et al.  Ubiquitous and significant anaerobic oxidation of methane in freshwater lake sediments. , 2018, Water research.

[13]  M. Jetten,et al.  Increases in temperature and nutrient availability positively affect methane‐cycling microorganisms in Arctic thermokarst lake sediments , 2018, Environmental microbiology.

[14]  B. Jørgensen,et al.  Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea , 2018, The ISME Journal.

[15]  Ingmar Nitze,et al.  21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes , 2018, Nature Communications.

[16]  G. Tyson,et al.  A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction , 2018, The ISME Journal.

[17]  A. Townsend‐Small,et al.  Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon , 2018, Nature Climate Change.

[18]  M. Leigh,et al.  Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. , 2017, The Science of the total environment.

[19]  Rick L. Stevens,et al.  A communal catalogue reveals Earth’s multiscale microbial diversity , 2017, Nature.

[20]  A. Kushmaro,et al.  Iron-Coupled Anaerobic Oxidation of Methane Performed by a Mixed Bacterial-Archaeal Community Based on Poorly Reactive Minerals. , 2017, Environmental science & technology.

[21]  A. Stams,et al.  Reverse Methanogenesis and Respiration in Methanotrophic Archaea , 2017, Archaea.

[22]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[23]  G. Grosse,et al.  Thermokarst-lake methanogenesis along a complete talik profile , 2015 .

[24]  S. Joye,et al.  High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions , 2015, Nature Communications.

[25]  D. M. Lawrence,et al.  Climate change and the permafrost carbon feedback , 2014, Nature.

[26]  Guido Grosse,et al.  Methane and Carbon Cioxide Emissions from 40 Lakes Along a North-South Latitudinal Transect in Alaska , 2014 .

[27]  N. Boon,et al.  Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways , 2013, The ISME Journal.

[28]  Pelin Yilmaz,et al.  The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks , 2013, Nucleic Acids Res..

[29]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[30]  C. Schubert,et al.  Anaerobic oxidation of methane in an iron‐rich Danish freshwater lake sediment , 2013 .

[31]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[32]  A. Boetius,et al.  Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction , 2011, Proceedings of the National Academy of Sciences.

[33]  Y. Kamagata,et al.  A distinct freshwater-adapted subgroup of ANME-1 dominates active archaeal communities in terrestrial subsurfaces in Japan. , 2011, Environmental microbiology.

[34]  F. Gelman,et al.  Geochemical evidence for iron‐mediated anaerobic oxidation of methane , 2011 .

[35]  S. Katsev,et al.  The methane cycle in ferruginous Lake Matano , 2011, Geobiology.

[36]  H. Wickham ggplot2 , 2011 .

[37]  Ming L. Wu,et al.  Nitrite-driven anaerobic methane oxidation by oxygenic bacteria , 2010, Nature.

[38]  V. Orphan,et al.  Manganese- and Iron-Dependent Marine Methane Oxidation , 2009, Science.

[39]  W. Reeburgh Oceanic methane biogeochemistry. , 2007, Chemical reviews.

[40]  K. Nauhaus,et al.  In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. , 2007, Environmental microbiology.

[41]  Mike S. M. Jetten,et al.  A microbial consortium couples anaerobic methane oxidation to denitrification , 2006, Nature.

[42]  J. Ferry,et al.  Trace methane oxidation studied in several Euryarchaeota under diverse conditions. , 2005, Archaea.

[43]  K. Nauhaus,et al.  Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. , 2005, Environmental microbiology.

[44]  A. Chidthaisong,et al.  Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens , 2004 .

[45]  L. Tranvik,et al.  Measurement of methane oxidation in lakes: a comparison of methods. , 2002, Environmental science & technology.

[46]  C. Martens,et al.  Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernfoerde Bay, German Baltic Sea , 1999 .

[47]  Sergey Zimov,et al.  North Siberian Lakes: A Methane Source Fueled by Pleistocene Carbon , 1997 .

[48]  Jens Harder,et al.  Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide , 1997 .

[49]  V. Rampton,et al.  Quaternary geology of the Tuktoyaktuk Coastlands, Northwest Territories , 1988 .

[50]  R. Berner,et al.  Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases1 , 1977 .

[51]  L. Stookey Ferrozine---a new spectrophotometric reagent for iron , 1970 .