Mechanisms of RND multidrug efflux pumps.

[1]  Ireena Bagai,et al.  Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. , 2008, Biochemistry.

[2]  C. van Delden,et al.  Resistance and Virulence of Pseudomonas aeruginosa Clinical Strains Overproducing the MexCD-OprJ Efflux Pump , 2008, Antimicrobial Agents and Chemotherapy.

[3]  H. Mori,et al.  Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist. , 2007, Structure.

[4]  Ireena Bagai,et al.  Substrate-linked Conformational Change in the Periplasmic Component of a Cu(I)/Ag(I) Efflux System* , 2007, Journal of Biological Chemistry.

[5]  H. Zgurskaya,et al.  Fitting Periplasmic Membrane Fusion Proteins to Inner Membrane Transporters: Mutations That Enable Escherichia coli AcrA To Function with Pseudomonas aeruginosa MexB , 2007, Journal of bacteriology.

[6]  H. Nikaido,et al.  Ligand‐transporter interaction in the AcrB multidrug efflux pump determined by fluorescence polarization assay , 2007, FEBS letters.

[7]  H. Nikaido,et al.  Site-Directed Disulfide Cross-Linking Shows that Cleft Flexibility in the Periplasmic Domain Is Needed for the Multidrug Efflux Pump AcrB of Escherichia coli , 2007, Journal of bacteriology.

[8]  W. Kern,et al.  Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). , 2007, The Journal of antimicrobial chemotherapy.

[9]  H. Zgurskaya,et al.  Drug-Induced Conformational Changes in Multidrug Efflux Transporter AcrB from Haemophilus influenzae , 2007, Journal of bacteriology.

[10]  E. Bokma,et al.  A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps , 2007, Proceedings of the National Academy of Sciences.

[11]  S. Lau,et al.  Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB , 2007, Molecular microbiology.

[12]  C. Briand,et al.  Drug Export Pathway of Multidrug Exporter AcrB Revealed by DARPin Inhibitors , 2006, PLoS biology.

[13]  Y. Yamauchi,et al.  Cholesterol sensing, trafficking, and esterification. , 2006, Annual review of cell and developmental biology.

[14]  G. McDermott,et al.  Conformation of the AcrB Multidrug Efflux Pump in Mutants of the Putative Proton Relay Pathway , 2006, Journal of bacteriology.

[15]  H. Nikaido,et al.  Threonine-978 in the Transmembrane Segment of the Multidrug Efflux Pump AcrB of Escherichia coli Is Crucial for Drug Transport as a Probable Component of the Proton Relay Network , 2006, Journal of bacteriology.

[16]  Satoshi Murakami,et al.  Crystal structures of a multidrug transporter reveal a functionally rotating mechanism , 2006, Nature.

[17]  K. Diederichs,et al.  Structural Asymmetry of AcrB Trimer Suggests a Peristaltic Pump Mechanism , 2006, Science.

[18]  C. Hotz,et al.  Importance of the adaptor (membrane fusion) protein hairpin domain for the functionality of multidrug efflux pumps. , 2006, Biochemistry.

[19]  H. Zgurskaya,et al.  Conformational flexibility in the multidrug efflux system protein AcrA. , 2006, Structure.

[20]  M. Gray,et al.  Mutations in the Central Cavity and Periplasmic Domain Affect Efflux Activity of the Resistance-Nodulation-Division Pump EmhB from Pseudomonas fluorescens cLP6a , 2006, Journal of bacteriology.

[21]  G. McDermott,et al.  A Periplasmic Drug-Binding Site of the AcrB Multidrug Efflux Pump: a Crystallographic and Site-Directed Mutagenesis Study , 2005, Journal of bacteriology.

[22]  H. Nikaido,et al.  Aminoglycosides Are Captured from both Periplasm and Cytoplasm by the AcrD Multidrug Efflux Transporter of Escherichia coli , 2005, Journal of bacteriology.

[23]  M. Totrov,et al.  Vacuuming the Periplasm , 2005, Journal of bacteriology.

[24]  Masato Yoshimura,et al.  Crystal Structure of the Drug Discharge Outer Membrane Protein, OprM, of Pseudomonas aeruginosa , 2004, Journal of Biological Chemistry.

[25]  J. Eswaran,et al.  Three's company: component structures bring a closer view of tripartite drug efflux pumps. , 2004, Current opinion in structural biology.

[26]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[27]  E. Bokma,et al.  Structure of the periplasmic component of a bacterial drug efflux pump. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  T. Tsukihara,et al.  Crystal Structure of the Membrane Fusion Protein, MexA, of the Multidrug Transporter in Pseudomonas aeruginosa* , 2004, Journal of Biological Chemistry.

[29]  K. Poole,et al.  Differential Impact of MexB Mutations on Substrate Selectivity of the MexAB-OprM Multidrug Efflux Pump of Pseudomonas aeruginosa , 2004, Journal of bacteriology.

[30]  A. Yamaguchi,et al.  Extramembrane Central Pore of Multidrug Exporter AcrB in Escherichia coli Plays an Important Role in Drug Transport* , 2004, Journal of Biological Chemistry.

[31]  A. Yamaguchi,et al.  Mechanisms of drug/H+ antiport: complete cysteine-scanning mutagenesis and the protein engineering approach. , 2003, Current opinion in chemical biology.

[32]  H. Nikaido,et al.  AcrB Multidrug Efflux Pump of Escherichia coli: Composite Substrate-Binding Cavity of Exceptional Flexibility Generates Its Extremely Wide Substrate Specificity , 2003, Journal of bacteriology.

[33]  C. Elkins,et al.  Chimeric Analysis of AcrA Function Reveals the Importance of Its C-Terminal Domain in Its Interaction with the AcrB Multidrug Efflux Pump , 2003, Journal of bacteriology.

[34]  C. Rensing,et al.  Molecular Analysis of the Copper-Transporting Efflux System CusCFBA of Escherichia coli , 2003, Journal of bacteriology.

[35]  Gerry McDermott,et al.  Structural Basis of Multiple Drug-Binding Capacity of the AcrB Multidrug Efflux Pump , 2003, Science.

[36]  T. Nakae,et al.  An Elegant Means of Self-protection in Gram-negative Bacteria by Recognizing and Extruding Xenobiotics from the Periplasmic Space* 210 , 2003, The Journal of Biological Chemistry.

[37]  H. Zgurskaya,et al.  Chimeric Analysis of the Multicomponent Multidrug Efflux Transporters from Gram-Negative Bacteria , 2002, Journal of bacteriology.

[38]  C. Elkins,et al.  Substrate Specificity of the RND-Type Multidrug Efflux Pumps AcrB and AcrD of Escherichia coli Is Determined Predominately by Two Large Periplasmic Loops , 2002, Journal of bacteriology.

[39]  T. Murata,et al.  On the mechanism of substrate specificity by resistance nodulation division (RND)‐type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonas aeruginosa are involved in substrate recognition , 2002, Molecular microbiology.

[40]  Satoshi Murakami,et al.  Crystal structure of bacterial multidrug efflux transporter AcrB , 2002, Nature.

[41]  A. Yamaguchi,et al.  The Putative Response Regulator BaeR Stimulates Multidrug Resistance of Escherichia coli via a Novel Multidrug Exporter System, MdtABC , 2002, Journal of bacteriology.

[42]  H. Nikaido,et al.  The BaeSR Two-Component Regulatory System Activates Transcription of the yegMNOB (mdtABCD) Transporter Gene Cluster in Escherichia coli and Increases Its Resistance to Novobiocin and Deoxycholate , 2002, Journal of bacteriology.

[43]  K. Poole,et al.  Differential Effects of Mutations in tonB1 on Intrinsic Multidrug Resistance and Iron Acquisition in Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[44]  Angela Lee,et al.  MexXY-OprM Efflux Pump Is Required for Antagonism of Aminoglycosides by Divalent Cations inPseudomonas aeruginosa , 2001, Antimicrobial Agents and Chemotherapy.

[45]  T. Nakae,et al.  Identification of Essential Charged Residues in Transmembrane Segments of the Multidrug Transporter MexB ofPseudomonas aeruginosa , 2001, Journal of bacteriology.

[46]  Angela Lee,et al.  Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: Novel Agents for Combination Therapy , 2001, Antimicrobial Agents and Chemotherapy.

[47]  Colin Hughes,et al.  Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export , 2000, Nature.

[48]  Angela Lee,et al.  Interplay between Efflux Pumps May Provide Either Additive or Multiplicative Effects on Drug Resistance , 2000, Journal of bacteriology.

[49]  D. Nies,et al.  Energetics and Topology of CzcA, a Cation/Proton Antiporter of the Resistance-Nodulation-Cell Division Protein Family* , 1999, Journal of Biological Chemistry.

[50]  H. Nikaido,et al.  Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  H. Nikaido,et al.  AcrA is a highly asymmetric protein capable of spanning the periplasm. , 1999, Journal of molecular biology.

[52]  Hiroshi Nikaido,et al.  Multidrug Efflux Pump AcrAB of Salmonella typhimuriumExcretes Only Those β-Lactam Antibiotics Containing Lipophilic Side Chains , 1998, Journal of bacteriology.

[53]  K. Poole,et al.  Influence of the TonB Energy-Coupling Protein on Efflux-Mediated Multidrug Resistance in Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.

[54]  M H Saier,et al.  A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. , 1997, FEMS microbiology letters.

[55]  H. Yoneyama,et al.  Use of Fluorescence Probes to Monitor Function of the Subunit Proteins of the MexA-MexB-OprM Drug Extrusion Machinery inPseudomonas aeruginosa * , 1997, The Journal of Biological Chemistry.

[56]  H. Nikaido Multidrug efflux pumps of gram-negative bacteria , 1996, Journal of bacteriology.

[57]  I. Paulsen,et al.  Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[58]  H. Nikaido,et al.  Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[59]  J. Hearst,et al.  Genes acrA and acrB encode a stress‐induced efflux system of Escherichia coli , 1995, Molecular microbiology.

[60]  D. Livermore,et al.  Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-lactam resistance , 1994, Antimicrobial Agents and Chemotherapy.

[61]  P. Gros,et al.  Phosphatidylcholine translocase: A physiological role for the mdr2 gene , 1994, Cell.

[62]  M H Saier,et al.  A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria , 1994, Journal of bacteriology.

[63]  M. Vaara Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium , 1993, Antimicrobial Agents and Chemotherapy.

[64]  J. Hearst,et al.  Molecular cloning and characterization of acrA and acrE genes of Escherichia coli , 1993, Journal of bacteriology.

[65]  Y. Anraku,et al.  Purification and reconstitution of Escherichia coli proline carrier using a site specifically cleavable fusion protein. , 1988, The Journal of biological chemistry.

[66]  K. Diederichs,et al.  Supplementary materials for : Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB , 2007 .

[67]  Arne Skerra,et al.  The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins , 2007, Nature Protocols.