Nonmonotone algorithm for minimax optimization problems

Many real life problems can be stated as a minimax optimization problem, such as the problems in economics, finance, management, engineering and other fields. In this paper, we present an algorithm with nonmonotone strategy and second-order correction technique for minimax optimization problems. Using this scheme, the new algorithm can overcome the difficulties of the Maratos effect occurred in the nonsmooth optimization, and the global and superlinear convergence of the algorithm can be achieved accordingly. Numerical experiments indicate some advantages of this scheme.

[1]  N. Deng,et al.  Nonmonotonic trust region algorithm , 1993 .

[2]  E. Polak Basics of Minimax Algorithms , 1989 .

[3]  Fusheng Wang,et al.  A hybrid algorithm for nonlinear minimax problems , 2008, Ann. Oper. Res..

[4]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[5]  E. Michael Gertz,et al.  A quasi-Newton trust-region method , 2004, Math. Program..

[6]  Wenyu Sun,et al.  Nonmonotone trust region method for solving optimization problems , 2004, Appl. Math. Comput..

[7]  Xiang Cai,et al.  An improved SQP algorithm for solving minimax problems , 2009, Appl. Math. Lett..

[8]  M. Overton Algorithms for nonlinear L1 and L∞ fitting , 1982 .

[9]  R. Fletcher,et al.  Second order corrections for non-differentiable optimization , 1982 .

[10]  Ya-Xiang Yuan,et al.  On the superlinear convergence of a trust region algorithm for nonsmooth optimization , 1985, Math. Program..

[11]  Xiang-Sun Zhang,et al.  A nonmonotone adaptive trust region method and its convergence , 2003 .

[12]  Jiangtao Mo,et al.  A nonmonotone trust region method based on nonincreasing technique of weighted average of the successive function values , 2007 .

[13]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[14]  Ya-Xiang Yuan,et al.  On the convergence of a new trust region algorithm , 1995 .

[15]  R. Fletcher A model algorithm for composite nondifferentiable optimization problems , 1982 .

[16]  V. F. Demʹi︠a︡nov,et al.  Nonsmooth optimization and related topics , 1989 .

[17]  L. Grippo,et al.  A nonmonotone line search technique for Newton's method , 1986 .

[18]  Peiping Shen,et al.  A new pruning test for finding all global minimizers of nonsmooth functions , 2005, Appl. Math. Comput..

[19]  Fusheng Wang,et al.  A fractional programming algorithm based on conic quasi-Newton trust region method for unconstrained minimization , 2006, Appl. Math. Comput..

[20]  A. Tits,et al.  Nonmonotone line search for minimax problems , 1993 .

[21]  Manlio Gaudioso,et al.  A bundle type approach to the unconstrained minimization of convex nonsmooth functions , 1982, Math. Program..

[22]  Ran Quan,et al.  A New Superlinearly Convergent SQP Algorithm for Nonlinear Minimax Problems , 2007 .

[23]  Philippe L. Toint,et al.  An Assessment of Nonmonotone Linesearch Techniques for Unconstrained Optimization , 1996, SIAM J. Sci. Comput..

[24]  M. J. D. Powell,et al.  On the global convergence of trust region algorithms for unconstrained minimization , 1984, Math. Program..

[25]  Ju-Liang Zhang,et al.  A Modified SQP Method with Nonmonotone Linesearch Technique , 2001, J. Glob. Optim..

[26]  M. J. D. Powell,et al.  Nonlinear optimization, 1981 , 1982 .

[27]  Y. H. Yu,et al.  Nonmonotone Line Search Algorithm for Constrained Minimax Problems , 2002 .

[28]  A. Tits,et al.  Avoiding the Maratos effect by means of a nonmonotone line search I. general constrained problems , 1991 .

[29]  D. Mayne,et al.  Superlinearly convergent algorithm for min-max problems , 1991 .