Total variation regularization for the reconstruction of a mountain topography

The aim of this paper is to reconstruct a paleo mountain topography using a total variation (TV) regularization. A coupled system integrates the tectonic process with the surface process to simulate the evolution of a paleo mountain topography. The tectonic process and the surface process are described by a 3D convection-diffusion equation and a 2D convection-diffusion equation, respectively. We recover a piecewise smooth velocity field for the tectonic process as well as reconstruct a piecewise smooth mountain topography for the surface process using a TV regularization in an iterative fashion. The effects of the number of samples and of wavelengths on inversions are investigated. In our numerical experiments, we shall experience three difficulties: (I) recovering a large quantity of information from the limited amount of measurement data; (II) detecting sharp features; (III) choosing a properly initial guess value for a TV regularization. The numerical experiments show that a TV regularization is an efficient and stable algorithm.

[1]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[2]  Mehdi Dehghan,et al.  Legendre multiscaling functions for solving the one‐dimensional parabolic inverse problem , 2009 .

[3]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[4]  Elena Cherkaev,et al.  Non-smooth gravity problem with total variation penalization functional , 2002 .

[5]  D. Dobson,et al.  Convergence of an Iterative Method for Total Variation Denoising , 1997 .

[6]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[7]  Dang Duc Trong,et al.  A new regularized method for two dimensional nonhomogeneous backward heat problem , 2009, Appl. Math. Comput..

[8]  Jean Braun,et al.  Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography , 2003 .

[9]  R. Ewing,et al.  Low-temperature anisotropic diffusion of helium in zircon: Implications for zircon (U–Th)/He thermochronometry , 2007 .

[10]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[11]  M. Hanke,et al.  Nonstationary Iterated Tikhonov Regularization , 1998 .

[12]  P. Reiners,et al.  Past, Present, and Future of Thermochronology , 2005 .

[13]  A. Meesters,et al.  Solving the production -diffusion equation for finite diffusion domains of various shapes part 2, Application to cases with Alpha ejection and non-homogeneous distribution of the source , 2002 .

[14]  J. Braun Quantifying the effect of recent relief changes on age–elevation relationships , 2002 .

[15]  S. Osher,et al.  Decomposition of images by the anisotropic Rudin‐Osher‐Fatemi model , 2004 .

[16]  常远,et al.  米仓山—汉南隆起白垩纪以来的剥露作用:磷灰石(U-Th)/He年龄记录 , 2010 .

[17]  Michael K. Ng,et al.  On Semismooth Newton’s Methods for Total Variation Minimization , 2007, Journal of Mathematical Imaging and Vision.

[18]  K. Farley,et al.  Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes , 2003 .

[19]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[20]  J. Tomkin,et al.  The influence of alpine glaciation on the relief of tectonically active mountain belts , 2002 .

[21]  A. C. Warnock,et al.  An evaluation of low-temperature apatite UTh/He thermochronometry , 1997 .

[22]  K. Kunisch,et al.  Regularization by Functions of Bounded Variation and Applications to Image Enhancement , 1999 .

[23]  Rick Archibald,et al.  Determining the locations and discontinuities in the derivatives of functions , 2008 .

[24]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[25]  Barbara Kaltenbacher,et al.  On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations , 2010, ArXiv.

[26]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[27]  Chein-Shan Liu Group preserving scheme for backward heat conduction problems , 2004 .

[28]  Kerry Gallagher,et al.  Evolving temperature histories from apatite fission-track data , 1995 .

[29]  Prabir Daripa,et al.  Two stable methods with numerical experiments for solving the backward heat equation , 2011 .

[30]  K. Farley,et al.  An empirical test of helium diffusion in apatite: borehole data from the Otway basin, Australia , 1999 .

[31]  H. Engl,et al.  Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .

[32]  V. Isakov Appendix -- Function Spaces , 2017 .

[33]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[34]  A. Chambolle Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.

[35]  Hu Sheng-biao,et al.  Exhumation history of the Micangshan-Hannan Dome since Cretaceous and its tectonic significance: evidences from Apatite Fission Track analysis , 2010 .

[36]  J. Avouac,et al.  Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography , 2010 .

[37]  Michael Hintermüller,et al.  An Infeasible Primal-Dual Algorithm for Total Bounded Variation-Based Inf-Convolution-Type Image Restoration , 2006, SIAM J. Sci. Comput..

[38]  J. Baumeister,et al.  Modified iterated Tikhonov methods for solving systems of nonlinear ill-posed equations , 2011, ArXiv.

[39]  Hongkai Zhao,et al.  Multilevel bioluminescence tomography based on radiative transfer equation part 2: total variation and l1 data fidelity. , 2010, Optics express.

[40]  J. Braun,et al.  Inversion of thermochronological age-elevation profiles to extract independent estimates of denudation and relief history - II: Application to the French Western Alps , 2010 .

[41]  David Belton,et al.  Computational Tools for Low-Temperature Thermochronometer Interpretation , 2005 .

[42]  Shuhua Zhang,et al.  A numerical approximation to the solution of an inverse heat conduction problem , 2010 .

[43]  J. Braun,et al.  Quantitative Thermochronology: Numerical Methods for the Interpretation of Thermochronological Data , 2006 .

[44]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[45]  Tran Nhan Tam Quyen,et al.  Convergence rates for total variation regularization of coefficient identification problems in elliptic equations I , 2011 .

[46]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[47]  Chein-Shan Liu,et al.  Identification of temperature‐dependent thermophysical properties in a partial differential equation subject to extra final measurement data , 2007 .

[48]  K. Farley,et al.  Calibration of the apatite (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California , 2000 .

[49]  O. Ghattas,et al.  Algorithmic strategies for full waveform inversion: 1D experiments , 2009 .

[50]  J. Braun Estimating exhumation rate and relief evolution by spectral analysis of age–elevation datasets , 2002 .

[51]  Y. Wang,et al.  Quantifying Tectonic and Geomorphic Interpretations of Thermochronometer Data with Inverse Problem Theory , 2011 .

[52]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..