Inositol 1,4,5‐trisphosphate receptors: Immunocytochemical localization in the dorsal cochlear nucleus

In the cochlear nucleus of mammals, the relatively homogeneous responses of auditory nerve fibers are transformed into a variety of different response patterns by the different classes of resident neurons. The spectrum of these responses is hypothesized to depend on the types and distribution of receptors, ion channels, G proteins, and second messengers that form the signaling capabilities in each cell class. In the present study, we examined the immunocytochemical distribution of the inositol 1,4,5‐trisphosphate (IP3) receptor in the dorsal cochlear nucleus to better understand how this second messenger might be involved in shaping the neural signals evoked by sound.

[1]  R Meddis,et al.  Regularity of cochlear nucleus stellate cells: a computational modeling study. , 1993, The Journal of the Acoustical Society of America.

[2]  S. Nakanishi Molecular diversity of glutamate receptors and implications for brain function. , 1992, Science.

[3]  R. Nicoll,et al.  Mechanisms underlying long-term potentiation of synaptic transmission. , 1991, Annual review of neuroscience.

[4]  P. Manis,et al.  Responses to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus in vitro. , 1989, Journal of neurophysiology.

[5]  K K Osen,et al.  Stellate neurons in rat dorsal cochlear nucleus studied with combined Golgi impregnation and electron microscopy: synaptic connections and mutual coupling by gap junctions , 1984, Journal of neurocytology.

[6]  K. Mikoshiba,et al.  Distribution of the inositol 1,4,5‐trisphosphate receptor, P400, in adult rat brain , 1993, The Journal of comparative neurology.

[7]  J. Moore,et al.  The primate cochlear nuclei: loss of lamination as a phylogenetic process. , 1980, The Journal of comparative neurology.

[8]  R. Huganir,et al.  Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles , 1989, Nature.

[9]  J. Kehne,et al.  Differential blockade of early and late components of acoustic startle following intrathecal infusion of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) ord,l-2-amino-5-phosphonovaleric acid (AP-5) , 1990, Brain Research.

[10]  D. K. Morest,et al.  The neuronal architecture of the cochlear nucleus of the cat , 1974, The Journal of comparative neurology.

[11]  T. Südhof,et al.  Structure of a novel InsP3 receptor. , 1991, The EMBO journal.

[12]  T. Südhof,et al.  Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor , 1989, Nature.

[13]  W. Warr Parallel Ascending Pathways from the Cochlear Nucleus: Neuroanatomical Evidence of Functional Specialization , 1995 .

[14]  K. Mikoshiba,et al.  Immunohistochemical localization of an inositol 1,4,5-trisphosphate receptor, P400, in neural tissue: studies in developing and adult mouse brain , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  Teiichi Furuichi,et al.  Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400 , 1989, Nature.

[16]  S. Snyder,et al.  Messenger molecules in the cerebellum , 1990, Trends in Neurosciences.

[17]  D A Godfrey,et al.  Single unit activity in the dorsal cochlear nucleus of the cat , 1975, The Journal of comparative neurology.

[18]  J. A. Hirsch,et al.  Intrinsic properties of neurones in the dorsal cochlear nucleus of mice, in vitro. , 1988, The Journal of physiology.

[19]  S. H. Snyder,et al.  Neuronal inositol 1,4,5-trisphosphate receptor localized to the plasma membrane of olfactory cilia , 1993, Neuroscience.

[20]  N. Kiang,et al.  STIMULUS CODING AT CAUDAL LEVELS OF THE CAT'S AUDITORY NERVOUS SYSTEM: I. RESPONSE CHARACTERISTICS OF SINGLE UNITS , 1973 .

[21]  G. Spirou,et al.  Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus , 1994, The Journal of comparative neurology.

[22]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[23]  D. Linden,et al.  Long-term synaptic depression in the mammalian brain , 1994, Neuron.

[24]  K K Osen,et al.  Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse , 1980, Journal of neurocytology.

[25]  J. Adams Neuronal morphology in the human cochlear nucleus. , 1986, Archives of otolaryngology--head & neck surgery.

[26]  E. Mugnaini,et al.  The polypeptide PEP-19 is a marker for Purkinje neurons in cerebellar cortex and cartwheel neurons in the dorsal cochlear nucleus. , 1987, Archives italiennes de biologie.

[27]  S. Snyder,et al.  Localization of the inositol 1,4,5-trisphosphate receptor in synaptic terminals in the vertebrate retina , 1991, Neuron.

[28]  D. Ryugo,et al.  The projections of intracellularly labeled auditory nerve fibers to the dorsal cochlear nucleus of cats , 1993, The Journal of comparative neurology.

[29]  E. Mugnaini,et al.  The Purkinje cell class may extend beyond the cerebellum , 1990, Journal of neurocytology.

[30]  Shigetada Nakanishi,et al.  Metabotropic glutamate receptors: Synaptic transmission, modulation, and plasticity , 1994, Neuron.

[31]  P. Worley,et al.  Inositol 1,4,5-trisphosphate receptor binding: autoradiographic localization in rat brain , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  K. Mikoshiba,et al.  Immunohistochemical localization of the inositol 1,4,5-triphosphate receptor in the human nervous system , 1993, Brain Research.

[33]  E. Mugnaini,et al.  Cartwheel neurons of the dorsal cochlear nucleus: A Golgi‐electron microscopic study in rat , 1984, The Journal of comparative neurology.

[34]  S. Snyder,et al.  Inositol 1,4,5-trisphosphate receptors: Immunohistochemical localization to discrete areas of rat central nervous system , 1993, Neuroscience.

[35]  J. Polak,et al.  Subcellular localization of the inositol 1,4,5-triphosphate receptor, P400, in the vestibular complex and dorsal cochlear nucleus of the rat , 1994, Brain Research.

[36]  D. Klein,et al.  Alpha 1-adrenoceptor activation elevates cytosolic calcium in rat pinealocytes by increasing net influx. , 1987, The Journal of biological chemistry.

[37]  T. Südhof,et al.  Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. , 1990, The Journal of biological chemistry.

[38]  M. Sachs,et al.  Regularity analysis in a compartmental model of chopper units in the anteroventral cochlear nucleus. , 1991, Journal of neurophysiology.

[39]  M. Berridge Inositol trisphosphate and calcium signalling , 1993, Nature.

[40]  S. Zhang,et al.  Cartwheel and superficial stellate cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices. , 1993, Journal of neurophysiology.

[41]  N. Kiang,et al.  STIMULUS CODING AT CAUDAL LEVELS OF THE CAT'S AUDITORY NERVOUS SYSTEM: II. PATTERNS OF SYNAPTIC ORGANIZATION , 1973 .

[42]  S. B. Kater,et al.  Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. , 1994, Annual review of neuroscience.

[43]  K K Osen,et al.  The cochlear nuclei in man. , 1979, The American journal of anatomy.

[44]  Michael J. Berridge,et al.  Inositol phosphates and cell signalling , 1989, Nature.

[45]  S. Snyder,et al.  Differential immunohistochemical localization of inositol 1,4,5- trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.