2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature

In this work, we report on the above-room-temperature continuous-wave operation of InP-based antimony-free triangular quantum well (QW) lasers emitting up to approximately 2.4 µm. X-ray diffraction measurement confirms the favorable structural quality of the highly strained triangular QWs composed of InAs/In0.53Ga0.47As digital alloy. The maximum continuous-wave working temperature reaches 340 K, and the output power at 300 K is about 11 mW/facet at an injection current of 350 mA. The internal quantum efficiency of 58% is deduced at 300 K, and the extrapolated threshold current density for infinite cavity length is 210 A/cm2 per quantum well.

[1]  Markus Ortsiefer,et al.  Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm , 2007 .

[2]  Henryk Temkin,et al.  InGaAs/InGaAsP/InP strained-layer quantum well lasers at approximately 2 mu m , 1992 .

[3]  T. Fujisawa,et al.  2.33-$\mu$ m-Wavelength Distributed Feedback Lasers With InAs–In $_{0.53}$Ga$_{0.47}$As Multiple-Quantum Wells on InP Substrates , 2008, IEEE Photonics Technology Letters.

[4]  Markus-Christian Amann,et al.  Type-II InP-based lasers emitting at 2.55 μm , 2012 .

[5]  C. Jagadish,et al.  Lasers and photodetectors for mid-infrared 2–3 μm applications , 2008 .

[6]  H. C. Casey,et al.  Variation of intervalence band absorption with hole concentration in p‐type InP , 1984 .

[7]  Laurent Cerutti,et al.  Single-mode monolithic GaSb Vertical-Cavity Surface-Emitting Laser. , 2012, Optics express.

[8]  A. Andrejew,et al.  InP-Based Type-II Quantum-Well Lasers and LEDs , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  Manijeh Razeghi,et al.  Room temperature continuous wave operation of λ ∼ 3–3.2 μm quantum cascade lasers , 2012 .

[10]  Luchun Zhou,et al.  2.7 μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers , 2013 .

[11]  W. Bonner,et al.  Infrared reflectance and absorption of N-type InP , 1983 .

[12]  Zhaobing Tian,et al.  Performance of gas source MBE-grown wavelength-extended InGaAs photodetectors with different buffer structures , 2009 .

[13]  Jyh-Shyang Wang,et al.  Room-temperature 2.2-/spl mu/m InAs-InGaAs-InP highly strained multiquantum-well lasers grown by gas-source molecular beam epitaxy , 1998 .

[14]  Y. Kondo,et al.  2.33 /spl mu/m-wavelength InAs/InGaAs multiple-quantum-well lasers grown by MOVPE , 2007 .

[15]  Strain Compensated AlInGaAs/InGaAs/InAs Triangular Quantum Wells for Lasing Wavelength beyond 2 μm , 2007 .

[16]  Markus-Christian Amann,et al.  Room-temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers , 2012 .

[17]  T. Hosoda,et al.  Type-I Diode Lasers for Spectral Region Above 3 μm , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Guo-wei Wang,et al.  High power laser diodes of 2 μm AlGaAsSb/InGaSb type I quantum-wells* , 2015 .