Constrained Minima and Lipschitzian Penalties in Metric Spaces

It is well known that a local minimizer of a constrained optimization problem with Lipschitzian objective is a free local minimizer of an assigned penalty function if the constraints satisfy an appropriate regularity condition. We use an upper Lipschitz property (L1) as regularity concept and present locally Lipschitz penalty functions defined on the whole space for arbitrary constraint maps of this type. We give conditions under which the maximum of the penalties of finitely many multifunctions is a valid penalty function for the intersection of these multifunctions. Further, the same statements will be derived under other regularity assumptions, namely, for calm or pseudo-Lipschitz constraints which violate (L1), by showing that some submapping of a calm map always has property (L1) and possesses (locally) the same penalties. In this way our penalizations induce in a unified manner, via known properties of free local minimizers for Lipschitz functions only, primal and dual necessary conditions for these basic notions of regularity.

[1]  A. Ben-Tal Second-order and related extremality conditions in nonlinear programming , 1980 .

[2]  Leonid Kantorovich,et al.  Funktionalanalysis in normierten Räumen , 1978 .

[3]  Stephen M. Robinson,et al.  Regularity and Stability for Convex Multivalued Functions , 1976, Math. Oper. Res..

[4]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[5]  S. M. Robinson Some continuity properties of polyhedral multifunctions , 1981 .

[6]  R. Cominetti Metric regularity, tangent sets, and second-order optimality conditions , 1990 .

[7]  R. Rockafellar Extensions of subgradient calculus with applications to optimization , 1985 .

[8]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[9]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .

[10]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[11]  J. Burke An exact penalization viewpoint of constrained optimization , 1991 .

[12]  Jon W. Tolle,et al.  Exact penalty functions in nonlinear programming , 1973, Math. Program..

[13]  E. G. Golʹshteĭn Theory of convex programming , 1972 .

[14]  S. M. Robinson Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .

[15]  S. Dolecki,et al.  Exact Penalties for Local Minima , 1979 .

[16]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[17]  R. Rockafellar The theory of subgradients and its applications to problems of optimization : convex and nonconvex functions , 1981 .

[18]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[19]  Alexander Shapiro,et al.  First and Second Order Optimality Conditions and Perturbation Analysis of Semi-Infinite Programming Problems , 1998 .

[20]  J. Warga,et al.  Necessary conditions without differentiability assumptions in optimal control , 1975 .

[21]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[22]  James V. Burke,et al.  Calmness and exact penalization , 1991 .

[23]  A. Ben-Tal,et al.  A unified theory of first and second order conditions for extremum problems in topological vector spaces , 1982 .

[24]  B. Mordukhovich,et al.  Stablity of Set-Valued Mappings In Infinite Dimensions: Point Criteria and Applications , 1997 .

[25]  W. Zangwill Non-Linear Programming Via Penalty Functions , 1967 .

[26]  A. Ya. Kruger Strict (ε, δ)-Subdifferentials and Extremality Conditions , 2002 .

[27]  R. Henrion,et al.  A Subdifferential Condition for Calmness of Multifunctions , 2001 .

[28]  Asen L. Dontchev,et al.  Characterizations of Lipschitz Stability in Optimization , 1995 .

[29]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[30]  R. Fletcher Practical Methods of Optimization , 1988 .

[31]  Aharon Ben-Tal,et al.  Optimality in nonlinear programming: A feasible directions approach , 1981 .

[32]  J. Penot On regularity conditions in mathematical programming , 1982 .

[33]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[34]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .

[35]  Michel Théra,et al.  Metric Inequality, Subdifferential Calculus and Applications , 2001 .

[36]  F. Clarke,et al.  Topological Geometry: THE INVERSE FUNCTION THEOREM , 1981 .

[37]  Bernd Kummer,et al.  Inverse functions of pseudo regular mappings and regularity conditions , 2000, Math. Program..

[38]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[39]  R. W. Chaney Optimality conditions for piecewiseC2 nonlinear programming , 1989 .

[40]  Robert Deville,et al.  The subdifferential of the sum of two functions in Banach spaces II. Second order case , 1995, Bulletin of the Australian Mathematical Society.

[41]  I. I. Eremin The penalty method in convex programming , 1967 .

[42]  M. Studniarski Necessary and sufficient conditions for isolated local minima of nonsmooth functions , 1986 .

[43]  J. Zowe,et al.  Regularity and stability for the mathematical programming problem in Banach spaces , 1979 .

[44]  Jirí V. Outrata,et al.  A Generalized Mathematical Program with Equilibrium Constraints , 2000, SIAM J. Control. Optim..

[45]  R. DeVille,et al.  The viscosity subdifferential of the sum of two functions in Banach spaces. I. First order case , 1996 .