Bandlimited shearlet-type frames with nice duals

The present paper constructs a frame/dual frame pair of shearlet type such that both frames possess the distinctive time-frequency localization properties needed in establishing their desirable approximation properties. Our construction is based on a careful pasting together of two bandlimited shearlet Parseval frames associated with two different frequency cones, inspired by domain decomposition methods used primarily for the solution of PDEs.

[1]  Stéphane Mallat,et al.  Sparse geometric image representations with bandelets , 2005, IEEE Transactions on Image Processing.

[2]  Demetrio Labate,et al.  Shearlet Smoothness Spaces , 2013 .

[3]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[4]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[5]  Wang-Q Lim,et al.  Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.

[6]  D. Donoho Sparse Components of Images and Optimal Atomic Decompositions , 2001 .

[7]  Demetrio Labate,et al.  Optimally Sparse Representations of 3D Data with C2 Surface Singularities Using Parseval Frames of Shearlets , 2012, SIAM J. Math. Anal..

[8]  Rob P. Stevenson,et al.  Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..

[9]  B. Jawerth,et al.  A discrete transform and decompositions of distribution spaces , 1990 .

[10]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[11]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[12]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[13]  Philipp Grohs,et al.  Continuous Shearlet Tight Frames , 2010, 1001.1516.

[14]  Wang-Q Lim,et al.  Wavelets with composite dilations and their MRA properties , 2006 .

[15]  Gitta Kutyniok,et al.  Parabolic Molecules , 2012, Found. Comput. Math..

[16]  Renjin Jiang,et al.  Predual Spaces of Banach Completions of Orlicz-Hardy Spaces Associated with Operators , 2009, 0906.1880.

[17]  M. Nielsen,et al.  Frame Decomposition of Decomposition Spaces , 2007 .

[18]  Gabriele Steidl,et al.  Shearlet coorbit spaces and associated Banach frames , 2009 .

[19]  Rob P. Stevenson,et al.  Computation of differential operators in wavelet coordinates , 2005, Math. Comput..

[20]  E. Candès,et al.  Continuous curvelet transform: II. Discretization and frames , 2005 .

[21]  Wang-Q Lim,et al.  Compactly Supported Shearlets , 2010, 1009.4359.

[22]  G. Kutyniok,et al.  Construction of Compactly Supported Shearlet Frames , 2010, 1003.5481.

[23]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[24]  D. Labate,et al.  The Construction of Smooth Parseval Frames of Shearlets , 2013 .

[25]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[26]  Gabriele Steidl,et al.  Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings , 2011 .

[27]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[28]  I. Babuska,et al.  The Partition of Unity Method , 1997 .