ShaEP: Molecular Overlay Based on Shape and Electrostatic Potential

ShaEP is a tool for rigid-body superimposition and similarity evaluation of ligand-sized molecules. Molecular overlay methods traditionally work on either substructures, molecular surfaces or interaction fields, or atom-centered Gaussian functions representing the molecular volume. While substructure searches are unlikely to reveal hits that are chemically different from the template structure, the other methods are capable of "scaffold hopping". Methods that match characteristic points in interaction fields can find alignments in situations where only some portions of the structures match but potentially miss good alignments if the used point sets are not detailed enough, which in turn increases the runtime of the used graph algorithms beyond practical limits. The faster, polynomially scaling volumetric methods consider the whole space to be equally important, which works well for molecules of equal size but partial matches might go undetected. ShaEP aims to capture the strengths of both field-based and volumetric approaches. It generates initial superimpositions using a matching algorithm on graphs that coarsely represent the electrostatic potential and local shape at points close to the molecular surfaces. The initial alignments are then optimized by maximization of the volume overlap of the molecules, computed using Gaussian functions. ShaEP overlays drug-sized molecules on a subsecond timescale, allowing for the screening of large virtual libraries. The program is available free of charge from www.abo.fi/fak/mnf/bkf/research/johnson/software.php.

[1]  Vijay Kumar,et al.  Metrics and Connections for Rigid-Body Kinematics , 1999, Int. J. Robotics Res..

[2]  C. Lemmen,et al.  FLEXS: a method for fast flexible ligand superposition. , 1998, Journal of medicinal chemistry.

[3]  Ajay N. Jain,et al.  Robust ligand-based modeling of the biological targets of known drugs. , 2006, Journal of medicinal chemistry.

[4]  Anthony Nicholls,et al.  What do we know and when do we know it? , 2008, J. Comput. Aided Mol. Des..

[5]  Peter Willett,et al.  Similarity searching in files of three-dimensional chemical structures: Representation and searching of molecular electrostatic potentials using field-graphs , 1997, J. Comput. Aided Mol. Des..

[6]  Tonghua Li,et al.  The combination of principal component analysis, genetic algorithm and tabu search in 3d molecular similarity , 2004 .

[7]  Mark S. Johnson,et al.  Generating Conformer Ensembles Using a Multiobjective Genetic Algorithm , 2007, J. Chem. Inf. Model..

[8]  Mats Gyllenberg,et al.  BODIL: a molecular modeling environment for structure-function analysis and drug design , 2004, J. Comput. Aided Mol. Des..

[9]  D. Cruickshank,et al.  Remarks about protein structure precision. , 1999, Acta crystallographica. Section D, Biological crystallography.

[10]  S. K. Kearsley Structural comparisons using restrained inhomogeneous transformations , 1989 .

[11]  Edward E. Hodgkin,et al.  Molecular similarity based on electrostatic potential and electric field , 1987 .

[12]  Reino Laatikainen,et al.  FLUFF-BALL, A Template-Based Grid-Independent Superposition and QSAR Technique: Validation Using a Benchmark Steroid Data Set , 2003, J. Chem. Inf. Comput. Sci..

[13]  Simon K. Kearsley,et al.  An alternative method for the alignment of molecular structures: Maximizing electrostatic and steric overlap , 1990 .

[14]  Junichi Goto,et al.  ASEDock-Docking Based on Alpha Spheres and Excluded Volumes , 2008, J. Chem. Inf. Model..

[15]  J. Irwin,et al.  ZINC ? A Free Database of Commercially Available Compounds for Virtual Screening. , 2005 .

[16]  Sung Yong Shin,et al.  On-line locomotion generation based on motion blending , 2002, SCA '02.

[17]  B. R. Markey,et al.  Singularity‐free static lattice energy minimization , 1979 .

[18]  Gregory A Landrum,et al.  Conformation mining: an algorithm for finding biologically relevant conformations. , 2005, Journal of medicinal chemistry.

[19]  Ajay N. Jain,et al.  Effects of inductive bias on computational evaluations of ligand-based modeling and on drug discovery , 2008, J. Comput. Aided Mol. Des..

[20]  Antti Poso,et al.  BRUTUS: optimization of a grid-based similarity function for rigid-body molecular superposition. 1. Alignment and virtual screening applications. , 2005, Journal of medicinal chemistry.

[21]  Tamar Schlick,et al.  Efficient Implementation of the Truncated-Newton Algorithm for Large-Scale Chemistry Applications , 1999, SIAM J. Optim..

[22]  Mathew Hahn,et al.  Three-Dimensional Shape-Based Searching of Conformationally Flexible Compounds , 1997, J. Chem. Inf. Comput. Sci..

[23]  W. G. Richards,et al.  Rapid evaluation of shape similarity using Gaussian functions , 1993, J. Chem. Inf. Comput. Sci..

[24]  Jussi Parkkinen,et al.  BRUTUS: Optimization of a grid-based similarity function for rigid-body molecular superposition. II. Description and characterization , 2006, J. Comput. Aided Mol. Des..

[25]  Ajay N. Jain,et al.  Parameter estimation for scoring protein-ligand interactions using negative training data. , 2006, Journal of medicinal chemistry.

[26]  Christian Hofbauer,et al.  SURFCOMP: A Novel Graph-Based Approach to Molecular Surface Comparison , 2004, J. Chem. Inf. Model..

[27]  Valerie J Gillet,et al.  A Comparison of Field-Based Similarity Searching Methods: CatShape, FBSS, and ROCS , 2008, J. Chem. Inf. Model..

[28]  Tudor I. Oprea,et al.  Optimization of CAMD techniques 3. Virtual screening enrichment studies: a help or hindrance in tool selection? , 2008, J. Comput. Aided Mol. Des..

[29]  Peter Willett,et al.  Similarity Searching in Files of Three-Dimensional Chemical Structures. Alignment of Molecular Electrostatic Potential Fields with a Genetic Algorithm , 1996, J. Chem. Inf. Comput. Sci..

[30]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[31]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[32]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[33]  Kim Henrick,et al.  Common subgraph isomorphism detection by backtracking search , 2004, Softw. Pract. Exp..

[34]  J. A. Grant,et al.  A Gaussian Description of Molecular Shape , 1995 .

[35]  B. Fan,et al.  Molecular similarity and diversity in chemoinformatics: From theory to applications , 2006, Molecular Diversity.

[36]  P. Labute,et al.  Flexible alignment of small molecules. , 2001, Journal of medicinal chemistry.

[37]  R. Sheridan,et al.  SQ: a program for rapidly producing pharmacophorically relevent molecular superpositions. , 1999, Journal of medicinal chemistry.

[38]  Andy Vinter,et al.  Molecular Field Extrema as Descriptors of Biological Activity: Definition and Validation , 2006, J. Chem. Inf. Model..

[39]  Janez Konc,et al.  An improved branch and bound algorithm for the maximum clique problem , 2007 .

[40]  Jeremy G. Vinter,et al.  FieldScreen: Virtual Screening Using Molecular Fields. Application to the DUD Data Set , 2008, J. Chem. Inf. Model..

[41]  D. Blow,et al.  Rearrangement of Cruickshank's formulae for the diffraction-component precision index. , 2002, Acta crystallographica. Section D, Biological crystallography.

[42]  Sung Jin Cho,et al.  FLAME: A Program to Flexibly Align Molecules. , 2006 .

[43]  Lazaros Mavridis,et al.  Toward High Throughput 3D Virtual Screening Using Spherical Harmonic Surface Representations , 2007, J. Chem. Inf. Model..

[44]  Andrew C Good Novel DOCK clique driven 3D similarity database search tools for molecule shape matching and beyond: adding flexibility to the search for ligand kin. , 2007, Journal of molecular graphics & modelling.

[45]  Charles F. F. Karney Quaternions in molecular modeling. , 2005, Journal of molecular graphics & modelling.

[46]  Andrew C. Good,et al.  Utilization of Gaussian functions for the rapid evaluation of molecular similarity , 1992, J. Chem. Inf. Comput. Sci..

[47]  Etsuji Tomita,et al.  An Efficient Branch-and-bound Algorithm for Finding a Maximum Clique with Computational Experiments , 2001, J. Glob. Optim..

[48]  Paul Watson,et al.  Calculating the knowledge-based similarity of functional groups using crystallographic data , 2001, J. Comput. Aided Mol. Des..

[49]  Ajay N. Jain,et al.  Ligand-based structural hypotheses for virtual screening. , 2004, Journal of medicinal chemistry.

[50]  Tamar Schlick,et al.  Remark on Algorithm 702—the updated truncated Newton minimization package , 1999, TOMS.

[51]  Noriaki Hirayama,et al.  Ph4Dock: pharmacophore-based protein-ligand docking. , 2004, Journal of medicinal chemistry.

[52]  J. A. Grant,et al.  A fast method of molecular shape comparison: A simple application of a Gaussian description of molecular shape , 1996, J. Comput. Chem..

[53]  Ray M. Marín,et al.  Graph Theoretical Similarity Approach To Compare Molecular Electrostatic Potentials , 2008, J. Chem. Inf. Model..

[54]  J. A. Grant,et al.  A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. , 2005, Journal of medicinal chemistry.

[55]  Paola Gratteri,et al.  Field interaction and geometrical overlap: a new simplex and experimental design based computational procedure for superposing small ligand molecules. , 2003, Journal of medicinal chemistry.

[56]  W. Graham Richards,et al.  Ultrafast shape recognition to search compound databases for similar molecular shapes , 2007, J. Comput. Chem..

[57]  Wolfgang Huber,et al.  FLASHFLOOD: A 3D Field-based similarity search and alignment method for flexible molecules , 2001, J. Comput. Aided Mol. Des..

[58]  Peter Willett,et al.  Similarity Searching in Files of Three-Dimensional Chemical Structures: Flexible Field-Based Searching of Molecular Electrostatic Potentials , 1996, J. Chem. Inf. Comput. Sci..

[59]  J. Irwin,et al.  Benchmarking sets for molecular docking. , 2006, Journal of medicinal chemistry.

[60]  Tamar Schlick,et al.  TNPACK—a truncated Newton minimization package for large-scale problems: II. Implementation examples , 1992, TOMS.

[61]  Christian Lemmen,et al.  Computational methods for the structural alignment of molecules , 2000, J. Comput. Aided Mol. Des..

[62]  Tamar Schlick,et al.  TNPACK—A truncated Newton minimization package for large-scale problems: I. Algorithm and usage , 1992, TOMS.

[63]  Irwin D. Kuntz,et al.  A fast and efficient method for 2D and 3D molecular shape description , 1992, J. Comput. Aided Mol. Des..