Google Trends in tourism and hospitality research: a systematic literature review

This paper aims to conduct a review of the literature published, between 2006 and 2018, that used search engine data on tourism and hospitality research, namely, Google Insights for Search and Google Trends. More specifically, it intends to identify the purpose and context of the data use, ascertaining the main findings and reviewing the methodological approaches.,A systematic literature review of Scopus indexed research has been carried out. Given the novelty of search engine data use in tourism and hospitality research and the relatively low number of search results in Scopus, other databases were used to broaden the scope of analysis, namely, EBSCO and Google Scholar. The papers selected were subjected to content and statistical analyses.,Google Trends data use in tourism and hospitality research has increased significantly from 2012 to 2017, mainly for tourism forecasting/nowcasting; knowing the interest of users’ searches for tourist attractions or destinations; showing the relationship between the official tourism statistics and the search volume index of Google Trends; and estimating the effect of one event on tourism demand. The categories and search terms used vary with the purpose of the study; however, they mostly focus on the travel category and use the country as the search term.,Google Trends has been increasingly used in research publications in tourism and hospitality, but the range of its applications and methods used has not yet been reviewed. Therefore, a systematic review of the existing literature increases awareness of its potential uses in tourism and hospitality research and facilitates a better understanding of its strengths and weaknesses as a research tool.,本文回顾2006年至2018年发表文献使用酒店旅游相关的搜索引擎数据, 即Google Insights for Search 以及Google Trends。确切地说, 本文旨在研究数据使用目的和背景, 归纳主要研究成果和研究方法。,本文采用Scopus索引, 由于旅游酒店领域使用搜索引擎数据的文献较少, Scopus搜索结果样本量较低, 本文扩展到其他数据库, 即EBSCO以及Google Scholar。选定的样本文献采用文本分析和统计分析法。,旅游酒店领域中对Google Trends数据使用的增加主要集中在2012年到2017年, 主要研究领域有(1)旅游预测/即时预报;(2)了解用户搜索旅游景点或目的地的需求;(3)官方旅游数据和Google Trends搜索量索引之间的关系;以及(4)评估大事件对旅游需求的影响。文献归类和搜索名词根据研究目的而不同。然而, 大多数文章使用‘旅游’归类以及使用国家作为搜索关键词。,Google Trends在酒店旅游领域研究中的使用逐渐增加, 但是据作者所知, 其应用的范畴和方法仍处在起步阶段。因此, 对现有文献的系统回顾可以提高对其在旅游酒店领域中应用的认知, 并且本文结果使其作为研究工具的优劣分析更深理解。,Google Trends, Google insights for search, 搜索引擎数据, 旅游酒店研究, 系统文献回顾

[1]  L. Cardoso,et al.  Film-induced tourism: a systematic literature review , 2017 .

[2]  H. Varian,et al.  Predicting the Present with Google Trends , 2012 .

[3]  Prosper F. Bangwayo-Skeete,et al.  Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach , 2015 .

[4]  Karl Wöber,et al.  A Comparative Study of Information Needs of City Travelers in Europe , 2008, J. Inf. Technol. Tour..

[5]  Boriss A. Siliverstovs,et al.  Google Trends and reality: Do the proportions match?: Appraising the informational value of online search behavior: Evidence from Swiss tourism regions , 2016 .

[6]  Zheng Xiang,et al.  Assessing the Initial Step in Persuasion Process: META Tags on Destination Marketing Websites , 2005, J. Inf. Technol. Tour..

[7]  Andrea Ballatore,et al.  Placing Wikimapia: an exploratory analysis , 2019, Int. J. Geogr. Inf. Sci..

[8]  Forecasting tourism arrivals with an online search engine data: A study of the Balearic Islands , 2017 .

[9]  Chun-Hung Chen,et al.  Social media analytics: Extracting and visualizing Hilton hotel ratings and reviews from TripAdvisor , 2017, Int. J. Inf. Manag..

[10]  Mahalia Jackman,et al.  Research Note: Nowcasting Tourist Arrivals in Barbados – Just Google it! , 2015 .

[11]  C. Artola,et al.  Can internet searches forecast tourism inflows , 2015 .

[12]  N. Kuminoff,et al.  Are Travelers Willing to Pay a Premium to Stay at a “Green” Hotel? Evidence from an Internal Meta-Analysis of Hedonic Price Premia , 2010, Agricultural and Resource Economics Review.

[13]  A. Lengyel Tourism, meditation, sustainability , 2016 .

[14]  Pedro R. Palos-Sanchez,et al.  The Collaborative Economy Based Analysis of Demand: Study of Airbnb Case in Spain and Portugal , 2018, J. Theor. Appl. Electron. Commer. Res..

[15]  Irem Önder,et al.  Forecasting Tourism Demand with Google Trends For a Major European City Destination , 2016 .

[16]  Sidhartha S. Padhi,et al.  Quantifying potential tourist behavior in choice of destination using Google Trends. , 2017 .

[17]  M. Barraza,et al.  Innovación de procesos en la gestión turística: una revisión de la literatura , 2015 .

[18]  Javier Nogueras-Iso,et al.  A method for checking the quality of geographic metadata based on ISO 19157 , 2018, Int. J. Geogr. Inf. Sci..

[19]  Gerardo Chowell,et al.  Skip the Trip: Air Travelers' Behavioral Responses to Pandemic Influenza , 2013, PloS one.

[20]  R. Law,et al.  Hospitality and Tourism Online Reviews: Recent Trends and Future Directions , 2015 .

[21]  C. Costa,et al.  Similarities and correlation between resident tourist overnights and Google Trends information in Portugal and its tourism regions , 2017 .

[22]  Charles Arcodia,et al.  A systematic literature review of risk and gender research in tourism , 2017 .

[23]  Ling Li,et al.  Big data in tourism research: A literature review , 2018, Tourism Management.

[24]  Izzat Alsmadi,et al.  Examining Web Search Trends Across Arab Countries , 2012 .

[25]  Juan Liu,et al.  Periodicity analysis and a model structure for consumer behavior on hotel online search interest in the US , 2017 .

[26]  S. Nuti,et al.  The Use of Google Trends in Health Care Research: A Systematic Review , 2014, PloS one.

[27]  Z. Irani,et al.  Critical analysis of Big Data challenges and analytical methods , 2017 .

[28]  Graeme Chamberlin,et al.  Googling the present , 2010 .

[29]  Bing Pan,et al.  Forecasting hotel room demand using search engine data. , 2012 .

[30]  Bing Pan,et al.  Google Trends and tourists' arrivals: Emerging biases and proposed corrections , 2018, Tourism Management.

[31]  Wonho Song,et al.  Short-term forecasting of Japanese tourist inflow to South Korea using Google trends data , 2017 .

[32]  Irem Önder,et al.  Forecasting tourism demand with Google trends: Accuracy comparison of countries versus cities , 2017 .

[33]  R. Costa,et al.  Backpackers’ contribution to development and poverty alleviation: myth or reality? A critical review of the literature and directions for future research , 2017, European Journal of Tourism Research.

[34]  C. Artola,et al.  Tracking the Future on the Web: Construction of Leading Indicators Using Internet Searches , 2012 .

[35]  Ceri Holdsworth Patterns of pay: results of the Annual Survey of Hours and Earnings 1997 to 2009 , 2010 .

[36]  Roberto Rivera,et al.  A dynamic linear model to forecast hotel registrations in Puerto Rico using Google Trends data , 2015, 1512.08097.

[37]  Rannveig Ólafsdóttir,et al.  Geotourism: A Systematic Literature Review , 2018, Geosciences.

[38]  The Influence of Weather on Interest in a “Sun, Sea, and Sand” Tourist Destination: The Case of Majorca , 2016 .

[39]  Xin Yang,et al.  Forecasting Chinese tourist volume with search engine data , 2015 .

[40]  K. Malek,et al.  Forecasting casino revenue by incorporating Google trends , 2018 .

[41]  R. Law,et al.  Social Media in Tourism and Hospitality: A Literature Review , 2013 .

[42]  Jelena Komsic,et al.  Mobile technologies and applications towards smart tourism – state of the art , 2019, Tourism Review.

[43]  Juan Liu,et al.  Comparison of Periodic Behavior of Consumer Online Searches for Restaurants in the U.S. and China Based on Search Engine Data , 2018, IEEE Access.

[44]  A. Lengyel Mindfulness and sustainability: utilizing the tourism context. , 2015 .

[45]  Xu Xu,et al.  Perceived pollution and inbound tourism in China , 2017 .

[46]  L. Grassini,et al.  Foreign arrivals nowcasting in Italy with Google Trends data , 2018 .

[47]  H. Varian,et al.  Predicting the Present with Google Trends , 2009 .

[48]  Ricardo A Correia,et al.  Culturomic assessment of Brazilian protected areas: Exploring a novel index of protected area visibility , 2018 .