From additional symmetries to linearization of Virasoro symmetries

[1]  Chao-Zhong Wu,et al.  A Class of Infinite-dimensional Frobenius Manifolds and Their Submanifolds , 2011, 1103.4048.

[2]  Chao-Zhong Wu $R$-matrices and Hamiltonian Structures for Certain Lax Equations , 2010, 1012.5245.

[3]  Dafeng Zuo Frobenius Manifolds Associated to Bl and Dl, Revisited , 2010 .

[4]  Chao-Zhong Wu,et al.  Bihamiltonian structure of the two-component Kadomtsev–Petviashvili hierarchy of type B , 2010, 1001.4126.

[5]  You-jin Zhang,et al.  On the Drinfeld–Sokolov Hierarchies of D Type , 2009, 0912.5273.

[6]  Chao-Zhong Wu A remark on Kac–Wakimoto hierarchies of D-type , 2009, 0906.5360.

[7]  K. Takasaki Differential Fay identities and auxiliary linear problem of integrable hiearchies , 2007, 0710.5356.

[8]  B. Dubrovin,et al.  Frobenius Manifolds and Central Invariants for the Drinfeld - Sokolov Bihamiltonian Structures , 2007, 0710.3115.

[9]  M. Tu On the BKP Hierarchy: Additional Symmetries, Fay Identity and Adler–Shiota–van Moerbeke Formula , 2006, nlin/0611053.

[10]  Jerrold E. Marsden,et al.  The Breadth of Symplectic and Poisson Geometry , 2007 .

[11]  A. Givental,et al.  Simple singularities and integrable hierarchies , 2003, math/0307176.

[12]  B. Dubrovin,et al.  Virasoro Symmetries of the Extended Toda Hierarchy , 2003, math/0308152.

[13]  B. Dubrovin,et al.  Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov - Witten invariants , 2001, math/0108160.

[14]  M. Bertola Jacobi Groups, Jacobi Forms and Their Applications , 1999 .

[15]  B. Dubrovin,et al.  Frobenius manifolds and Virasoro constraints , 1998, math/9808048.

[16]  P. Moerbeke,et al.  A Lax representation for the vertex operator and the central extension , 1995 .

[17]  J. Leur The Adler–Shiota–van Moerbeke formula for the BKP hierarchy , 1994, hep-th/9411159.

[18]  B. Dubrovin Geometry of 2D topological field theories , 1994, hep-th/9407018.

[19]  L. Dickey On additional symmetries of the KP hierarchy and Sato's Backlund transformation , 1993, hep-th/9312015.

[20]  K. Takasaki Integrable hierarchy underlying topological Landau-Ginzburg models of D-type , 1993, hep-th/9305053.

[21]  Maxim Kontsevich,et al.  Intersection theory on the moduli space of curves and the matrix airy function , 1992 .

[22]  P. Moerbeke,et al.  A matrix integral solution to two-dimensionalWp-gravity , 1992 .

[23]  E. Witten On the Structure of the Topological Phase of Two-dimensional Gravity , 1990 .

[24]  A. Orlov,et al.  Additional symmetries for integrable equations and conformal algebra representation , 1986 .

[25]  V. V. Sokolov,et al.  Lie algebras and equations of Korteweg-de Vries type , 1985 .

[26]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .

[27]  V. Kac,et al.  Bombay Lectures On Highest Weight Representations Of Infinite Dimensional Lie Algebras , 1983 .

[28]  Masaki Kashiwara,et al.  Transformation Groups for Soliton Equations —Euclidean Lie Algebras and Reduction of the KP Hierarchy— , 1982 .

[29]  Masaki Kashiwara,et al.  Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type , 1982 .

[30]  M. Jimbo,et al.  TRANSFORMATION GROUPS FOR SOLITON EQUATIONS , 1982 .

[31]  V. Kac,et al.  Spin and wedge representations of infinite-dimensional Lie algebras and groups. , 1981, Proceedings of the National Academy of Sciences of the United States of America.