Evaluation of nickel-molybdenum-oxides as cathodes for hydrogen evolution by water electrolysis in acidic, alkaline, and neutral media

[1]  V. Radmilović,et al.  RuOx nanoparticles deposited on TiO2 nanotube arrays by ion-exchange method as electrocatalysts for the hydrogen evolution reaction in acid solution , 2015 .

[2]  Zidong Wei,et al.  In situ growth of ruthenium oxide-nickel oxide nanorod arrays on nickel foam as a binder-free integrated cathode for hydrogen evolution , 2015 .

[3]  M. McArthur,et al.  Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte , 2014 .

[4]  S. Omanovic,et al.  Ir-Ni oxide as a promising material for nerve and brain stimulating electrodes , 2014 .

[5]  Haili He,et al.  A High‐Performance Binary Ni–Co Hydroxide‐based Water Oxidation Electrode with Three‐Dimensional Coaxial Nanotube Array Structure , 2014 .

[6]  B. Pan,et al.  Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. , 2014, Journal of the American Chemical Society.

[7]  S. Qiao,et al.  A graphene-MnO2 framework as a new generation of three-dimensional oxygen evolution promoter. , 2014, Chemical communications.

[8]  S. Shibli,et al.  Development of Fe2O3–TiO2 mixed oxide incorporated Ni–P coating for electrocatalytic hydrogen evolution reaction , 2013 .

[9]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[10]  V. Jović,et al.  Non-noble metal composite cathodes for hydrogen evolution. Part I: The Ni–MoOx coatings electrodeposited from Watt’s type bath containing MoO3 powder particles , 2011 .

[11]  V. Jović,et al.  Non-noble metal composite cathodes for hydrogen evolution. Part II: The Ni–MoO2 coatings electrodeposited from nickel chloride–ammonium chloride bath containing MoO2 powder particles , 2011 .

[12]  Richard G. Compton,et al.  Measurement of the diffusion coefficients of [Ru(NH3)6]3+ and [Ru(NH3)6]2+ in aqueous solution using microelectrode double potential step chronoamperometry , 2011 .

[13]  J. Coleman,et al.  Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene , 2010 .

[14]  Jeongmin T. Han,et al.  Quantitative Voltammetry in Weakly Supported Media. Chronoamperometric Studies on Diverse One Electron Redox Couples Containing Various Charged Species: Dissecting Diffusional and Migrational Contributions and Assessing the Breakdown of Electroneutrality , 2010 .

[15]  S. Omanovic,et al.  Ni and NiMo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix , 2006 .

[16]  M. Metikoš-huković,et al.  Sputter deposited nanocrystalline Ni and Ni-W films as catalysts for hydrogen evolution , 2006 .

[17]  Elisa Navarro-Flores,et al.  Hydrogen evolution on nickel incorporated in three-dimensional conducting polymer layers , 2005 .

[18]  Sasha Omanovic,et al.  Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium , 2005 .

[19]  E. Chassaing,et al.  Characterisation of electrodeposited nanocrystalline Ni–Mo alloys , 2004 .

[20]  J. Richardson X-ray diffraction study of nickel oxide reduction by hydrogen , 2003 .

[21]  K. Oguro,et al.  Raney multi-metallic electrodes from regular crystalline and quasi-crystalline precursors: I. Cu-stabilized Ni/Mo cathodes for hydrogen evolution in acid , 2001 .

[22]  S. Machado,et al.  Study of hydrogen evolution reaction in acid medium on Pt microelectrodes , 2001 .

[23]  N. Krstajić,et al.  Kinetic analysis of hydrogen evolution at Ni-Mo alloy electrodes , 2000 .

[24]  K. Oguro,et al.  Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: a new model , 1999 .

[25]  N. Krstajić,et al.  Cathodic behaviour of RuO2-doped Ni/Co3O4 electrodes in alkaline solutions: hydrogen evolution , 1998 .

[26]  G. Battaglin,et al.  PREPARATION AND CHARACTERIZATION OF OXIDE FILM ELECTRODES , 1997 .

[27]  Eiji Akiyama,et al.  Characterization of sputter-deposited Ni-Mo and Ni-W alloy electrocatalysts for hydrogen evolution in alkaline solution , 1997 .

[28]  G. Gerhardt,et al.  Fabrication and characterization of sputtered-carbon microelectrode arrays. , 1996, Analytical chemistry.

[29]  I. A. Raj,et al.  Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells , 1993 .

[30]  A. Lasia,et al.  Kinetics of hydrogen evolution on nickel electrodes , 1990 .

[31]  S. Trasatti Electrocatalysis in the anodic evolution of oxygen and chlorine , 1984 .

[32]  C. Marozzi,et al.  Development of electrode morphologies of interest in electrocatalysis: Part 2: Hydrogen evolution reaction on macroporous nickel electrodes , 2001 .

[33]  R. Parsons The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen , 1958 .