Support Vector Machines Applications

Support vector machines (SVM) have both a solid mathematical background and practical applications. This book focuses on the recent advances and applications of the SVM, such as image processing, medical practice, computer vision, and pattern recognition, machine learning, applied statistics, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications.

[1]  G. Wahba A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem , 1985 .

[2]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[3]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[4]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[5]  Thorsten Joachims,et al.  Learning to classify text using support vector machines - methods, theory and algorithms , 2002, The Kluwer international series in engineering and computer science.

[6]  P. Bartlett,et al.  Probabilities for SV Machines , 2000 .

[7]  Chris H. Q. Ding,et al.  Multi-class protein fold recognition using support vector machines and neural networks , 2001, Bioinform..

[8]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[9]  Roman Rosipal,et al.  Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space , 2002, J. Mach. Learn. Res..

[10]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[11]  Ralf Herbrich,et al.  Learning Kernel Classifiers: Theory and Algorithms , 2001 .

[12]  Javier M. Moguerza,et al.  An augmented Lagrangian interior-point method using directions of negative curvature , 2003, Math. Program..

[13]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[14]  Yi Lin,et al.  Support Vector Machines and the Bayes Rule in Classification , 2002, Data Mining and Knowledge Discovery.

[15]  Si Wu,et al.  Conformal Transformation of Kernel Functions: A Data-Dependent Way to Improve Support Vector Machine Classifiers , 2002, Neural Processing Letters.

[16]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[17]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[18]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[19]  Ming-Wei Chang,et al.  Load Forecasting Using Support Vector Machines: A Study on EUNITE Competition 2001 , 2004, IEEE Transactions on Power Systems.

[20]  Jason Weston,et al.  Gene functional classification from heterogeneous data , 2001, RECOMB.

[21]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[23]  S. Hua,et al.  A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. , 2001, Journal of molecular biology.

[24]  Peter Sollich,et al.  Bayesian Methods for Support Vector Machines: Evidence and Predictive Class Probabilities , 2002, Machine Learning.

[25]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[26]  D. Cox,et al.  Asymptotic Analysis of Penalized Likelihood and Related Estimators , 1990 .

[27]  Javier M. Moguerza,et al.  Support Vector Machine Classifiers for Asymmetric Proximities , 2003, ICANN.

[28]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[29]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[30]  Kristin P. Bennett,et al.  Support vector machines: hype or hallelujah? , 2000, SKDD.

[31]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[32]  Ming-Hsuan Yang,et al.  Learning Gender with Support Faces , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Nello Cristianini,et al.  Support vector machine classification and validation of cancer tissue samples using microarray expression data , 2000, Bioinform..

[34]  André Elisseeff,et al.  Stability and Generalization , 2002, J. Mach. Learn. Res..

[35]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[36]  Hava T. Siegelmann,et al.  Support Vector Clustering , 2002, J. Mach. Learn. Res..

[37]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[38]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[39]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[40]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[41]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[42]  Javier M. Moguerza,et al.  Estimation of high-density regions using one-class neighbor machines , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Lutgarde M. C. Buydens,et al.  Using support vector machines for time series prediction , 2003 .

[44]  Susan T. Dumais,et al.  Inductive learning algorithms and representations for text categorization , 1998, CIKM '98.

[45]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..

[46]  Peter Müller,et al.  Issues in Bayesian Analysis of Neural Network Models , 1998, Neural Computation.

[47]  Bernhard Schölkopf,et al.  Training Invariant Support Vector Machines , 2002, Machine Learning.

[48]  Federico Girosi,et al.  An improved training algorithm for support vector machines , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[49]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[50]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[51]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[52]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[53]  Javier M. Moguerza,et al.  Detecting the Number of Clusters Using a Support Vector Machine Approach , 2002, ICANN.

[54]  Federico Girosi,et al.  Support Vector Machines: Training and Applications , 1997 .

[55]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[56]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[57]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[58]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[59]  Zhirong Sun,et al.  Support vector machine approach for protein subcellular localization prediction , 2001, Bioinform..

[60]  Yi Lin,et al.  Statistical Properties and Adaptive Tuning of Support Vector Machines , 2002, Machine Learning.

[61]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[62]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[63]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.