Group automorphisms with few and with many periodic points

For each C ∈ [0,∞] a compact group automorphism T: X → X is constructed with the property that 1 n log|{x ∈ X |T n (x) = x}| → C. This may be interpreted as a combinatorial analogue of the (still open) problem of whether compact group automorphisms with any given topological entropy exist.

[1]  G. Pólya,et al.  Theory of functions, zeros, polynomials, determinants, number theory, geometry , 1977 .

[2]  T. Ward,et al.  S-integer dynamical systems: periodic points. , 1997 .

[3]  Hongze Li Zero-free regions for Dirichlet L-functions , 1999 .

[4]  Wang Wei On the least prime in an arithmetic progression , 1991 .

[5]  D. R. Heath-Brown Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression , 1992 .

[6]  Ergodic automorphisms of the infinite torus are bernoulli , 1974 .

[7]  D. H. Lehmer Factorization of Certain Cyclotomic Functions , 1933 .

[8]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[9]  D. Lind The structure of skew products with ergodic group automorphisms , 1977 .

[10]  J. England,et al.  The zeta function of automorphisms of solenoid groups , 1972 .

[11]  Graham Everest,et al.  HEIGHTS OF POLYNOMIALS AND ENTROPY IN ALGEBRAIC DYNAMICS (Universitext) By G RAHAM E VEREST and T HOMAS W ARD : 212 pp., £35.00, ISBN 1 85233 125 9 (Springer, 1999). , 2000 .

[12]  An Uncountable Family of Group Automorphisms, and a Typical Member , 1997 .

[13]  Thomas Ward,et al.  Arithmetic and growth of periodic orbits , 1999, math/9907003.

[14]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[15]  Almost all $S$-integer dynamical systems have many periodic points , 1998, Ergodic Theory and Dynamical Systems.

[16]  Klaus Schmidt,et al.  Mahler measure and entropy for commuting automorphisms of compact groups , 1990 .

[17]  Igor E. Shparlinski,et al.  Recurrence Sequences , 2003, Mathematical surveys and monographs.

[18]  INTEGER SEQUENCES AND PERIODIC POINTS , 2002 .