Data retention and low voltage operation of Al2O3/Hf0.5Zr0.5O2 based ferroelectric tunnel junctions

Ferroelectric random-access memories based on conventional perovskite materials are non-volatile but suffer from lack of CMOS compatibility, scalability limitation, and a destructive reading scheme. On the other hand, Ferroelectric Tunnel Junctions (FTJs) based on CMOS compatible hafnium oxide are a promising candidate for future non-volatile memory technology due to their simple structure, scalability, low power consumption, high operation speed, and non-destructive read-out operation. Herein, we report an efficient strategy based on the interface-engineering approach to improve upon the tunneling electroresistance effect and data retention by depositing bilayer oxide heterostructure (Al2O3/Hf0.5Zr0.5O2) using atomic layer deposition (ALD) on Ge substrate which is treated in-situ ALD chamber with H2-plasma before film deposition. Integrating a thin ferroelectric layer i.e. Hf0.5Zr0.5O2 (8.4 nm) with a thin interface layer i.e. Al2O3 (1 nm) allowed us to reduce the operation (read and write) voltage to 1.4 V, and 4.3 V, respectively, while maintaining a good tunneling electroresistance or ON/OFF ratio above 10. Furthermore, an extrapolation to 1000 years at room temperature gives a residual ON/OFF ratio of 4.

[1]  L. Esaki,et al.  Electron transport in Nb-Nb oxide-Bi tunnel junctions , 1971 .

[2]  R. Nemanich,et al.  Low Temperature Hydrogen Plasma Cleaning Processes of Si (100), Ge (100), and Si x Ge 1−x (100) , 1991 .

[3]  Cho,et al.  Surface electronic states of low-temperature H-plasma-exposed Ge(100). , 1992, Physical review. B, Condensed matter.

[4]  Yoshihisa Fujisaki,et al.  Electrode‐induced degradation of Pb(ZrxTi1−x)O3 (PZT) polarization hysteresis characteristics in Pt/PZT/Pt ferroelectric thin‐film capacitors , 1996 .

[5]  Jin-Ping Han,et al.  Electrode dependence of hydrogen-induced degradation in ferroelectric Pb(Zr,Ti)O3 and SrBi2Ta2O9 thin films , 1997 .

[6]  Yasuhiro Shimamoto,et al.  H2 DAMAGE OF FERROELECTRIC PB(ZR,TI)O3 THIN-FILM CAPACITORS : THE ROLE OF CATALYTIC AND ADSORPTIVE ACTIVITY OF THE TOP ELECTRODE , 1997 .

[7]  C. W. Tipton,et al.  EFFECT OF HYDROGEN ON PB(ZR, TI)O3-BASED FERROELECTRIC CAPACITORS , 1998 .

[8]  N. Zakharov,et al.  NANO-phase SBT-family ferroelectric memories , 1998 .

[9]  A. Kingon,et al.  Studies of hydrogen-induced degradation processes in SrBi2Ta2O9 ferroelectric film-based capacitors , 1999 .

[10]  Y. Kubo,et al.  DEGRADATION OF FERROELECTRIC SRBI2TA2O9 MATERIALS UNDER REDUCING CONDITIONS AND THEIR REACTION WITH PT ELECTRODES , 1999 .

[11]  Chenming Hu,et al.  Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric , 2000, IEEE Electron Device Letters.

[12]  Walter Hartner,et al.  FeRAM technology for high density applications , 2001, Microelectron. Reliab..

[13]  Chenming Hu,et al.  Direct tunneling leakage current and scalability of alternative gate dielectrics , 2002 .

[14]  S. Seo,et al.  Hydrogen-induced degradation in ferroelectric Bi3.25La0.75Ti3O12 , 2002 .

[15]  Rainer Waser,et al.  Resistive switching in metal–ferroelectric–metal junctions , 2003 .

[16]  V. Joshi,et al.  Effects of scaling the film thickness on the ferroelectric properties of SrBi2Ta2O9 ultra thin films , 2003 .

[17]  R. Waser,et al.  Dynamic leakage current compensation in ferroelectric thin-film capacitor structures , 2005 .

[18]  Hermann Kohlstedt,et al.  Tunneling Across a Ferroelectric , 2006, Science.

[19]  J. Deane,et al.  Reformulation of the standard theory of Fowler–Nordheim tunnelling and cold field electron emission , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Luca Crippa,et al.  Inside NAND Flash Memories , 2010 .

[21]  A. Marelli,et al.  NAND overview: from memory to systems , 2010 .

[22]  P Fons,et al.  Interfacial phase-change memory. , 2011, Nature nanotechnology.

[23]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[24]  M. Alexe,et al.  Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr 0.2 Ti 0.8)O3 films. , 2011, ACS nano.

[25]  Lothar Frey,et al.  Ferroelectricity in yttrium-doped hafnium oxide , 2011 .

[26]  Thomas Mikolajick,et al.  Incipient Ferroelectricity in Al‐Doped HfO2 Thin Films , 2012 .

[27]  Lothar Frey,et al.  Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.

[28]  Christoph Adelmann,et al.  Ferroelectricity in Gd-Doped HfO2 Thin Films , 2012 .

[29]  N. Ming,et al.  Colossal electroresistance in metal/ferroelectric/semiconductor tunnel diodes for resistive switching memories , 2012, 1208.5300.

[30]  T. Mikolajick,et al.  Reliability Characteristics of Ferroelectric $ \hbox{Si:HfO}_{2}$ Thin Films for Memory Applications , 2013, IEEE Transactions on Device and Materials Reliability.

[31]  Mohamad Towfik Krounbi,et al.  Basic principles of STT-MRAM cell operation in memory arrays , 2013 .

[32]  J. Grollier,et al.  Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions. , 2013, ACS nano.

[33]  Christoph Adelmann,et al.  Strontium doped hafnium oxide thin films: Wide process window for ferroelectric memories , 2013, 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[34]  Fei Cao,et al.  Wake-up effects in Si-doped hafnium oxide ferroelectric thin films , 2013 .

[35]  Amit Kumar,et al.  Ferroelectricity in Si‐Doped HfO2 Revealed: A Binary Lead‐Free Ferroelectric , 2014, Advanced materials.

[36]  A. Kummel,et al.  In-situ non-disruptive cleaning of Ge(100) using H2O2(g) and atomic hydrogen , 2014 .

[37]  Thomas Mikolajick,et al.  Electric field cycling behavior of ferroelectric hafnium oxide. , 2014, ACS applied materials & interfaces.

[38]  C. Hwang,et al.  Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric Hf0.5Zr0.5O2 thin films , 2015 .

[39]  Jacob L. Jones,et al.  Mixed Al and Si doping in ferroelectric HfO2 thin films , 2015 .

[40]  Cheol Seong Hwang,et al.  Study on the size effect in Hf0.5Zr0.5O2 films thinner than 8 nm before and after wake-up field cycling , 2015 .

[41]  Jacob L. Jones,et al.  Ferroelectric Si-Doped HfO2 Device Properties on Highly Doped Germanium , 2015, IEEE Electron Device Letters.

[42]  Michael Hoffmann,et al.  Complex Internal Bias Fields in Ferroelectric Hafnium Oxide. , 2015, ACS applied materials & interfaces.

[43]  C. Hwang,et al.  A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. , 2016, Nanoscale.

[44]  M. Walker,et al.  Low temperature removal of surface oxides and hydrocarbons from Ge(100) using atomic hydrogen , 2016 .

[45]  Thomas Mikolajick,et al.  Structural Changes Underlying Field‐Cycling Phenomena in Ferroelectric HfO2 Thin Films , 2016 .

[46]  Uwe Schroeder,et al.  Effect of Zr Content on the Wake-Up Effect in Hf1-xZrxO2 Films. , 2016, ACS applied materials & interfaces.

[47]  Shosuke Fujii,et al.  First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property , 2016, 2016 IEEE Symposium on VLSI Technology.

[48]  Stefan Slesazeck,et al.  Physical Mechanisms behind the Field‐Cycling Behavior of HfO2‐Based Ferroelectric Capacitors , 2016 .

[49]  Andreas Ruediger,et al.  A Complementary Metal Oxide Semiconductor Process-Compatible Ferroelectric Tunnel Junction. , 2017, ACS applied materials & interfaces.

[50]  A. Demkov,et al.  Ge(001) surface cleaning methods for device integration , 2017 .

[51]  Di Wu,et al.  Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier , 2017, Nature Communications.

[52]  Andreas Ruediger,et al.  Tunneling electroresistance effect in a Pt/Hf0.5Zr0.5O2/Pt structure , 2017 .

[53]  U. Böttger,et al.  Domain Pinning: Comparison of Hafnia and PZT Based Ferroelectrics , 2017 .

[54]  Maxim Spiridonov,et al.  Electron transport across ultrathin ferroelectric Hf0.5Zr0.5O2 films on Si , 2017 .

[55]  A. Gruverman,et al.  Ferroelectricity in Hf0.5Zr0.5O2 Thin Films: A Microscopic Study of the Polarization Switching Phenomenon and Field-Induced Phase Transformations. , 2018, ACS applied materials & interfaces.

[56]  C. Hwang,et al.  Improved Ferroelectric Switching Endurance of La-Doped Hf0.5Zr0.5O2 Thin Films. , 2018, ACS applied materials & interfaces.

[57]  T. Nishida,et al.  Tiered deposition of sub-5 nm ferroelectric Hf1-xZrxO2 films on metal and semiconductor substrates , 2018 .

[58]  Jacob L. Jones,et al.  Lanthanum-Doped Hafnium Oxide: A Robust Ferroelectric Material. , 2018, Inorganic chemistry.

[59]  Peng Zhou,et al.  Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications. , 2018, Nanoscale.

[60]  Michael Hoffmann,et al.  Built-In Bias Generation in Anti-Ferroelectric Stacks: Methods and Device Applications , 2018, IEEE Journal of the Electron Devices Society.

[61]  Michael Hoffmann,et al.  Ferroelectric Tunnel Junctions based on Ferroelectric-Dielectric Hf0.5Zr0.5.O2/ A12O3Capacitor Stacks , 2018, 2018 48th European Solid-State Device Research Conference (ESSDERC).

[62]  Sanghun Jeon,et al.  The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2 , 2018, Nanotechnology.

[63]  Wenjuan Zhu,et al.  Ferroelectric Tunneling Junctions Based on Aluminum Oxide/ Zirconium-Doped Hafnium Oxide for Neuromorphic Computing , 2019, Scientific Reports.

[64]  Jacob L. Jones,et al.  Effect of furnace annealing on the ferroelectricity of Hf0.5 Zr0.5O2 thin films , 2019, Thin Solid Films.

[65]  Patrick D. Lomenzo,et al.  Ferroelectric Hf1-xZrxO2 memories: device reliability and depolarization fields , 2019, 2019 19th Non-Volatile Memory Technology Symposium (NVMTS).

[66]  Michael Hoffmann,et al.  Retention Characteristics of Hf0.5Zr0.5O2-Based Ferroelectric Tunnel Junctions , 2019, 2019 IEEE 11th International Memory Workshop (IMW).

[67]  Michael Hoffmann,et al.  Direct Correlation of Ferroelectric Properties and Memory Characteristics in Ferroelectric Tunnel Junctions , 2019, IEEE Journal of the Electron Devices Society.

[68]  Jacob L. Jones,et al.  Effect of Forming Gas Furnace Annealing on the Ferroelectricity and Wake-Up Effect of Hf0.5Zr0.5O2 Thin Films , 2020 .

[69]  Jacob L. Jones,et al.  Effect of in situ hydrogen plasma on the ferroelectricity of hafnium zirconium oxide films , 2020 .