An Algorithm for Automatic Integration Over a Triangle Using Nonlinear Extrapolation

We describe an automatm algorithm for integration over a triangle. The algorithm uses an adaptive subdwlsional strategy with global acceptance criteria and incorporates the e-algorithm to speed convergence. Numerical results are presented which show that it deals effectively with various types of singularity along the boundaries of the integration triangle (or along the boundaries of eventual subtriangles of the subdivision).

[1]  David K. Kahaner Numerical quadrature by the -algorithm , 1972 .

[2]  R. Bruce Simpson,et al.  Local Versus Global Strategies for Adaptive Quadrature , 1975, TOMS.

[3]  J. N. Lyness,et al.  The Euler-Maclaurin expansion for the simplex , 1973 .

[4]  J. N. Lyness Quadrature over a Simplex: Part 1. A Representation for the Integrand Function , 1978 .

[5]  William E. Smith,et al.  Product-Integration Rules Based on the Zeros of Jacobi Polynomials , 1980 .

[6]  J. N. Lyness Quadrature over a Simplex: Part 2. A Representation for the Error Functional , 1978 .

[7]  Thomas N. L. Patterson,et al.  On the Automatic Numerical Evaluation of Definite Integrals , 1971, Comput. J..

[8]  Elise de Doncker,et al.  An adaptive extrapolation algorithm for automatic integration , 1978 .

[9]  E. de Doncker An adaptive extrapolation algorithm for automatic integration , 1978, SGNM.

[10]  J. Downing A Computer Controlled Circulation System , 1971, Comput. J..

[11]  J. N. Lyness,et al.  On Simplex Trapezoidal Rule Families , 1980 .

[12]  J. N. Lyness,et al.  An error functional expansion for $N$-dimensional quadrature with an integrand function singular at a point , 1976 .

[13]  Giovanni Monegato,et al.  Quadrature error functional expansions for the simplex when the integrand function has singularities at vertices , 1980 .

[14]  A. Householder On a Condition for the Nonsingularity of a Matrix , 1972 .

[15]  Elise de Doncker,et al.  Algorithm 612: TRIEX: Integration Over a TRIangle Using Nonlinear EXtrapolation , 1984, TOMS.

[16]  D. P. Laurie,et al.  Algorithm 584: CUBTRI: Automatic Cubature over a Triangle , 1982, TOMS.

[17]  Elise de Doncker,et al.  New euler-maclaurin expansions and their application to quadrature over the s-dimensional simplex , 1979 .

[18]  James N. Lyness,et al.  Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .

[19]  Paul Van Dooren,et al.  An adaptive algorithm for numerical integration over the n-cube , 1976 .

[20]  P. Wynn,et al.  On a Device for Computing the e m (S n ) Transformation , 1956 .

[21]  Elise De Doncker,et al.  Numerical integration and asymptotic expansion , 1980 .