Nanoscale organization of Nicastrin, the substrate receptor of the γ-secretase complex, as independent molecular domains

[1]  A. Mahadevan,et al.  Alteration in synaptic nanoscale organization dictates amyloidogenic processing in Alzheimer's disease , 2020, iScience.

[2]  D. Nair,et al.  Nanoscale rearrangement of APP organization as a therapeutic target for Alzheimer's disease. , 2020, Medical hypotheses.

[3]  W. Annaert,et al.  Super-resolution microscopy reveals majorly mono- and dimeric presenilin1/γ-secretase at the cell surface , 2020, eLife.

[4]  J. Sibarita,et al.  Real-time nanoscale organization of amyloid precursor protein. , 2020, Nanoscale.

[5]  M. Zacharias,et al.  Extracellular interface between APP and Nicastrin regulates Aβ length and response to γ‐secretase modulators , 2019, The EMBO journal.

[6]  D. Selkoe,et al.  A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor , 2019, The Journal of cell biology.

[7]  Y. Humeau,et al.  Modulation of AMPA receptor surface diffusion restores hippocampal plasticity and memory in Huntington’s disease models , 2018, Nature Communications.

[8]  B. Winblad,et al.  Super-resolution microscopy reveals γ-secretase at both sides of the neuronal synapse , 2016, Acta neuropathologica communications.

[9]  J. Hardy,et al.  The amyloid hypothesis of Alzheimer's disease at 25 years , 2016, EMBO molecular medicine.

[10]  Xuemin Xu,et al.  Nicastrin is required for amyloid precursor protein (APP) but not Notch processing, while anterior pharynx‐defective 1 is dispensable for processing of both APP and Notch , 2016, Journal of neurochemistry.

[11]  D. Selkoe,et al.  Nicastrin functions to sterically hinder γ-secretase–substrate interactions driven by substrate transmembrane domain , 2015, Proceedings of the National Academy of Sciences.

[12]  Yue-Ming Li,et al.  Complex regulation of γ-secretase: from obligatory to modulatory subunits , 2014, Front. Aging Neurosci..

[13]  T. Südhof,et al.  Synaptic function of nicastrin in hippocampal neurons , 2014, Proceedings of the National Academy of Sciences.

[14]  W. Annaert,et al.  A fast growing spectrum of biological functions of γ-secretase in development and disease. , 2013, Biochimica et biophysica acta.

[15]  T. Südhof,et al.  Conditional Forebrain Inactivation of Nicastrin Causes Progressive Memory Impairment and Age-Related Neurodegeneration , 2009, The Journal of Neuroscience.

[16]  P. S. St George-Hyslop,et al.  p53‐Dependent control of cell death by nicastrin: lack of requirement for presenilin‐dependent γ‐secretase complex , 2009, Journal of neurochemistry.

[17]  R. Martins,et al.  The Role of Presenilin and its Interacting Proteins in the Biogenesis of Alzheimer’s Beta Amyloid , 2006, Neurochemical Research.

[18]  T. Südhof,et al.  Nicastrin Functions as a γ-Secretase-Substrate Receptor , 2005, Cell.

[19]  H. Cai,et al.  Nicastrin Is Required for Assembly of Presenilin/γ-Secretase Complexes to Mediate Notch Signaling and for Processing and Trafficking of β-Amyloid Precursor Protein in Mammals , 2003, The Journal of Neuroscience.

[20]  B. Strooper,et al.  Aph-1, Pen-2, and Nicastrin with Presenilin Generate an Active γ-Secretase Complex , 2003, Neuron.

[21]  Sangram S. Sisodia,et al.  γ-Secretase, notch, Aβ and alzheimer's disease: Where do the presenilins fit in? , 2002, Nature Reviews Neuroscience.

[22]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..