MicroRNA and cancer: Current status and prospective

Gene expression in normal cells is highly regulated by complex gene regulatory networks. Disruption of these networks may lead to cancer. Recent studies have revealed the existence of an abundant class of small nonprotein‐coding regulatory RNAs, known as microRNAs (miRNAs). MiRNAs may regulate diverse biological processes including development, cell proliferation, differentiation and apoptosis, through suppressing the expression of their target genes. Posttranscriptional silencing of target genes by miRNAs occurs either by cleavage of homologous target messenger RNAs (mRNAs), or by inhibition of target protein synthesis. Computational predictions indicate that 1 miRNA may target on hundreds of genes, and suggest that over 50% of human protein‐coding genes might be regulated by miRNAs. MiRNAs are receiving increased attention in cancer genomic research. We are beginning to understand that miRNAs may act as oncogenes and/or tumor suppressor genes within the molecular architecture of gene regulatory networks, thereby contributing to the development of cancer. MiRNAs may provide useful diagnostic and prognostic markers for cancer diagnosis and treatment, as well as serving as potential therapeutic targets or tools. © 2006 Wiley‐Liss, Inc.

[1]  K. Livak,et al.  Real-time quantification of microRNAs by stem–loop RT–PCR , 2005, Nucleic acids research.

[2]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[3]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[4]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[5]  R. Shiekhattar,et al.  MicroRNA biogenesis and cancer. , 2005, Cancer research.

[6]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[7]  Mouldy Sioud,et al.  Profiling microRNA expression using sensitive cDNA probes and filter arrays. , 2004, BioTechniques.

[8]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[9]  S. Hammond MicroRNA therapeutics: a new niche for antisense nucleic acids. , 2006, Trends in molecular medicine.

[10]  T. Mukhopadhyay,et al.  Antisense therapy for cancer. , 1995, The cancer journal from Scientific American.

[11]  V. Ambros,et al.  Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation , 2004, Genome Biology.

[12]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[13]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[14]  J. Weiler,et al.  Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? , 2006, Gene Therapy.

[15]  Y. Yatabe,et al.  Reduced Expression of the let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival , 2004, Cancer Research.

[16]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[17]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[18]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[19]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[20]  Qian Liu,et al.  A high-throughput method to monitor the expression of microRNA precursors. , 2004, Nucleic acids research.

[21]  H. Taubert,et al.  Gains of 13q are correlated with a poor prognosis in liposarcoma , 2005, Modern Pathology.

[22]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[23]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[24]  N. Rajewsky,et al.  Cell-type-specific signatures of microRNAs on target mRNA expression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[25]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[26]  H. Taubert,et al.  Genomic imbalances of 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant , 1999, Genes, chromosomes & cancer.

[27]  T. Lister,et al.  Localisation of a novel region of recurrent amplification in follicular lymphoma to an approximately 6.8 Mb region of 13q32-33. , 2001, Genes, chromosomes & cancer.

[28]  A. van den Berg,et al.  BIC and miR‐155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas , 2005, The Journal of pathology.

[29]  Jin-Wu Nam,et al.  Genomics of microRNA. , 2006, Trends in genetics : TIG.

[30]  V. Kim MicroRNA biogenesis: coordinated cropping and dicing , 2005, Nature Reviews Molecular Cell Biology.

[31]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.

[32]  Jonathan Preall,et al.  RNAi: RISC Gets Loaded , 2005, Cell.

[33]  Isaac Bentwich Prediction and validation of microRNAs and their targets , 2005, FEBS letters.

[34]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[35]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[36]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[37]  Muller Fabbri,et al.  A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. , 2005, The New England journal of medicine.

[38]  K. Franssila,et al.  Gain of 3q and deletion of 11q22 are frequent aberrations in mantle cell lymphoma , 1998, Genes, chromosomes & cancer.

[39]  R. Shiekhattar,et al.  Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing , 2005, Cell.

[40]  Sven Diederichs,et al.  Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing. , 2006, Cancer research.

[41]  Wayne Tam,et al.  Accumulation of miR-155 and BIC RNA in human B cell lymphomas. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[43]  George A. Calin,et al.  Mammalian microRNAs: a small world for fine-tuning gene expression , 2006, Mammalian Genome.

[44]  S. Hammond,et al.  microRNA detection comes of age , 2006, Nature Methods.

[45]  Y. Yatabe,et al.  A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. , 2005, Cancer research.

[46]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[47]  Mariette Schrier,et al.  A Genetic Screen Implicates miRNA-372 and miRNA-373 As Oncogenes in Testicular Germ Cell Tumors , 2006, Cell.

[48]  C. Croce,et al.  An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  C. Benz,et al.  Rapid alteration of microRNA levels by histone deacetylase inhibition. , 2006, Cancer research.

[50]  M. Byrom,et al.  Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis , 2005, Nucleic acids research.

[51]  C. Croce,et al.  Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  K. Pritchard-Jones,et al.  A novel and consistent amplicon at 13q31 associated with alveolar rhabdomyosarcoma , 2000, Genes, chromosomes & cancer.

[53]  C. Croce,et al.  The role of microRNA genes in papillary thyroid carcinoma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S. Hammond,et al.  MicroRNAs as oncogenes. , 2006, Current opinion in genetics & development.

[55]  Chang-Zheng Chen,et al.  MicroRNAs as oncogenes and tumor suppressors. , 2005, The New England journal of medicine.

[56]  S. Whittaker,et al.  Comparative genomic hybridization analysis of primary cutaneous B‐cell lymphomas: Identification of common genomic alterations in disease pathogenesis , 2002, Genes, chromosomes & cancer.

[57]  Zissimos Mourelatos,et al.  Microarray-based, high-throughput gene expression profiling of microRNAs , 2004, Nature Methods.

[58]  J. Cigudosa,et al.  Chromosomal and gene amplification in diffuse large B-cell lymphoma. , 1998, Blood.

[59]  J. Testa,et al.  Perturbations of the AKT signaling pathway in human cancer , 2005, Oncogene.

[60]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[61]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[62]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[63]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[64]  F. Slack,et al.  The age of high-throughput microRNA profiling , 2004, Nature Methods.

[65]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[66]  S. Knuutila,et al.  DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. , 1998, The American journal of pathology.

[67]  S. Knuutila,et al.  Comparative genomic hybridization of malignant fibrous histiocytoma reveals a novel prognostic marker. , 1997, The American journal of pathology.

[68]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[69]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[70]  Muller Fabbri,et al.  MicroRNAs and leukemias: how strong is the connection? , 2006, Leukemia research.

[71]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[72]  Yuriy Gusev,et al.  Real-time expression profiling of microRNA precursors in human cancer cell lines , 2005, Nucleic acids research.

[73]  R. Stephens,et al.  Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. , 2006, Cancer cell.

[74]  George A Calin,et al.  MicroRNA fingerprints during human megakaryocytopoiesis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[75]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[76]  V. Ambros MicroRNA Pathways in Flies and Worms Growth, Death, Fat, Stress, and Timing , 2003, Cell.

[77]  N. Tsuda,et al.  Synthetic microRNA and double-stranded RNA targeting the 3'-untranslated region of HER-2/neu mRNA inhibit HER-2 protein expression in ovarian cancer cells. , 2005, International journal of oncology.

[78]  C. Perou,et al.  A custom microarray platform for analysis of microRNA gene expression , 2004, Nature Methods.

[79]  P. Meltzer Cancer genomics: Small RNAs with big impacts , 2005, Nature.

[80]  C. Croce,et al.  MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[81]  K. Kosik,et al.  MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. , 2005, Cancer research.

[82]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[83]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[84]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[85]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[86]  Michael Z Michael,et al.  Reduced accumulation of specific microRNAs in colorectal neoplasia. , 2003, Molecular cancer research : MCR.

[87]  Wigard P Kloosterman,et al.  In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes , 2005, Nature Methods.

[88]  S. Lowe,et al.  Dissecting p53 tumor suppressor functions in vivo. , 2002, Cancer cell.

[89]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[90]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[91]  A. Norton,et al.  Localisation of a novel region of recurrent amplification in follicular lymphoma to an ∼6.8 Mb region of 13q32‐33 , 2001 .

[92]  K. Czaplinski,et al.  Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. , 2004, RNA.

[93]  C. Croce,et al.  MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[94]  Y. Ko,et al.  Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. , 2001, Cytometry.

[95]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[96]  B. Li,et al.  Expression profiling reveals off-target gene regulation by RNAi , 2003, Nature Biotechnology.

[97]  C. Croce,et al.  miRNAs, Cancer, and Stem Cell Division , 2005, Cell.

[98]  Hiroyuki Tagawa,et al.  Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. , 2004, Cancer research.

[99]  A. Bradley,et al.  Identification of mammalian microRNA host genes and transcription units. , 2004, Genome research.

[100]  N. Rajewsky,et al.  A pancreatic islet-specific microRNA regulates insulin secretion , 2004, Nature.

[101]  W. S. Hayward,et al.  Avian bic, a Gene Isolated from a Common Retroviral Site in Avian Leukosis Virus-Induced Lymphomas That Encodes a Noncoding RNA, Cooperates with c-myc in Lymphomagenesis and Erythroleukemogenesis , 2002, Journal of Virology.

[102]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[103]  Sonal Patel,et al.  A single-molecule method for the quantitation of microRNA gene expression , 2005, Nature Methods.

[104]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[105]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[106]  Arndt Borkhardt,et al.  High expression of precursor microRNA‐155/BIC RNA in children with Burkitt lymphoma , 2004, Genes, chromosomes & cancer.

[107]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Mark Graham,et al.  miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. , 2006, Cell metabolism.

[109]  Shuta Tomida,et al.  Reduced expression of Dicer associated with poor prognosis in lung cancer patients , 2005, Cancer science.