An axiomatic approach to scalar data interpolation on surfaces

We discuss possible algorithms for interpolating data given on a set of curves in a surface of ℝ3. We propose a set of basic assumptions to be satisfied by the interpolation algorithms which lead to a set of models in terms of possibly degenerate elliptic partial differential equations. The Absolutely Minimizing Lipschitz Extension model (AMLE) is singled out and studied in more detail. We study the correctness of our numerical approach and we show experiments illustrating the interpolation of data on some simple test surfaces like the sphere and the torus.

[1]  Jean-Michel Morel,et al.  An axiomatic approach to image interpolation , 1997, Proceedings of International Conference on Image Processing.

[2]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[3]  John B. Greer,et al.  An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries , 2006, J. Sci. Comput..

[4]  R. Krause,et al.  Automatic construction of boundary parametrizations for geometric multigrid solvers , 2006 .

[5]  R. Jensen Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .

[6]  L. Evans,et al.  Optimal Lipschitz extensions and the infinity laplacian , 2001 .

[7]  Michael G. Crandall An Efficient Derivation of the Aronsson Equation , 2003 .

[8]  Wm. Randolph Franklin,et al.  Lossy Compression of Elevation Data , 1996 .

[9]  Guillermo Sapiro,et al.  Morse Description and Morphological Encoding of Continuous Data , 2004, Multiscale Model. Simul..

[10]  Casas Pla,et al.  Image Compression based on Perceptual Coding Techniques , 1996 .

[11]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[12]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[13]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[14]  William D. Philpot,et al.  Small-Scale Climate Maps: A Sensitivity Analysis of Some Common Assumptions Associated with Grid-Point Interpolation and Contouring , 1985 .

[15]  G. Aronsson Extension of functions satisfying lipschitz conditions , 1967 .

[16]  Gunnar Aronsson,et al.  On the partial differential equationux2uxx+2uxuyuxy+uy2uyy=0 , 1968 .

[17]  M. Crandall,et al.  A TOUR OF THE THEORY OF ABSOLUTELY MINIMIZING FUNCTIONS , 2004 .

[18]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[19]  Marcelo Bertalmío,et al.  Axiomatic scalar data interpolation on manifolds , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[20]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[21]  F. Lin,et al.  Elliptic Partial Differential Equations , 2000 .

[22]  Gunnar Aronsson,et al.  On certain singular solutions of the partial differential equation ux2uxx+2uxuyuxy+uy2uyy=0 , 1984 .

[23]  Stefan Carlsson,et al.  Sketch based coding of grey level images , 1988 .

[24]  I. Holopainen Riemannian Geometry , 1927, Nature.

[25]  F. D. Lio,et al.  COMPARISON RESULTS FOR QUASILINEAR EQUATIONS IN ANNULAR DOMAINS AND APPLICATIONS1* , 2002 .

[26]  Yann Gousseau,et al.  Interpolation of digital elevation models using AMLE and related methods , 2002, IEEE Trans. Geosci. Remote. Sens..

[27]  G. Barles,et al.  EXISTENCE AND COMPARISON RESULTS FOR FULLY NONLINEAR DEGENERATE ELLIPTIC EQUATIONS WITHOUT ZEROTH-ORDER TERM* , 2001 .

[28]  Frédéric Cao Absolutely minimizing Lipschitz extension with discontinuous boundary data , 1998 .