Dependence of Financial Institutions in China: An Analysis Based on FDG Copula Model

[1]  Carles M. Cuadras,et al.  A continuous general multivariate distribution and its properties , 1981 .

[2]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[3]  H. Joe,et al.  The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .

[4]  Fabrizio Durante,et al.  A new class of symmetric bivariate copulas , 2006 .

[5]  Aristeidis Samitas,et al.  Financial crises and stock market contagion in a multivariate time-varying asymmetric framework , 2011 .

[6]  Duc Khuong Nguyen,et al.  Global Financial Crisis, Extreme Interdependences, and Contagion Effects: The Role of Economic Structure? , 2011 .

[7]  Pedro Matos,et al.  Corporate Governance in the 2007-2008 Financial Crisis: Evidence from Financial Institutions Worldwide , 2012 .

[8]  Wen Long,et al.  Sector Indices Correlation Analysis in China's Stock Market , 2013, ITQM.

[9]  Pavel Krupskii,et al.  Factor copula models for multivariate data , 2013, J. Multivar. Anal..

[10]  Andrea Ugolini,et al.  A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector , 2015 .

[11]  Stéphane Girard,et al.  A flexible and tractable class of one-factor copulas , 2016, Stat. Comput..

[12]  Stelios D. Bekiros,et al.  A systemic risk analysis of Islamic equity markets using vine copula and delta CoVaR modeling , 2018, Journal of International Financial Markets, Institutions and Money.

[13]  Songsak Sriboonchitta,et al.  Measurement of Systemic Risk in Global Financial Markets and Its Application in Forecasting Trading Decisions , 2020, Sustainability.