GPU-accelerated elastic 3D image registration for intra-surgical applications

Local motion within intra-patient biomedical images can be compensated by using elastic image registration. The application of B-spline based elastic registration during interventional treatment is seriously hampered by its considerable computation time. The graphics processing unit (GPU) can be used to accelerate the calculation of such elastic registrations by using its parallel processing power, and by employing the hardwired tri-linear interpolation capabilities in order to efficiently perform the cubic B-spline evaluation. In this article it is shown that the similarity measure and its derivatives also can be calculated on the GPU, using a two pass approach. On average a speedup factor 50 compared to a straight-forward CPU implementation was reached.

[1]  Hervé Delingette,et al.  Robust nonrigid registration to capture brain shift from intraoperative MRI , 2005, IEEE Transactions on Medical Imaging.

[2]  Michael Unser,et al.  Fast parametric elastic image registration , 2003, IEEE Trans. Image Process..

[3]  Heinz-Otto Peitgen,et al.  GPU Accelerated Image Registration in Two and Three Dimensions , 2006, Bildverarbeitung für die Medizin.

[4]  Rüdiger Westermann,et al.  Non-rigid multi-modal registration on the GPU , 2007, SPIE Medical Imaging.

[5]  Guy B. Williams,et al.  Exceptionally fast non-linear 3D image registration using GPUs , 2009, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC).

[6]  Matt Pharr,et al.  Gpu gems 2: programming techniques for high-performance graphics and general-purpose computation , 2005 .

[7]  John D. Owens,et al.  Fast Deformable Registration on the GPU: A CUDA Implementation of Demons , 2008, 2008 International Conference on Computational Sciences and Its Applications.

[8]  J. Krüger,et al.  Linear algebra operators for GPU implementation of numerical algorithms , 2003, ACM Trans. Graph..

[9]  Thomas Martin Deserno,et al.  Bildverarbeitung für die Medizin: Grundlagen, Modelle, Methoden, Anwendungen , 1997, Bildverarbeitung für die Medizin.

[10]  Martin Rumpf,et al.  Image Registration by a Regularized Gradient Flow. A Streaming Implementation in DX9 Graphics Hardware , 2004, Computing.

[11]  Christopher Nimsky,et al.  Non-rigid Registration with Use of Hardware-Based 3D Bézier Functions , 2002, MICCAI.

[12]  Olivier Clatz,et al.  Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery , 2007, NeuroImage.

[13]  Markus Hadwiger,et al.  Fast Third-Order Texture Filtering , 2005 .

[14]  Sven Kabus,et al.  B-spline registration of 3D images with Levenberg-Marquardt optimization , 2004, SPIE Medical Imaging.

[15]  Ian Buck GPU Computing: Programming a Massively Parallel Processor , 2007, International Symposium on Code Generation and Optimization (CGO'07).

[16]  Dirk Loeckx,et al.  Automated Nonrigid Intra-Patient Image Registration Using B-Splines (Automatische niet-rigide intra-patient beeldregistratie met behulp van B-splines) , 2006 .

[17]  Paul Suetens,et al.  Efficient GPU-accelerated elastic image registration , 2008 .

[18]  Paul Suetens,et al.  Efficient GPU-Based Texture Interpolation using Uniform B-Splines , 2008, J. Graph. Tools.

[19]  R. Kikinis,et al.  Toward Real-Time Image Guided Neurosurgery Using Distributed and Grid Computing , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[20]  Erik H. W. Meijering,et al.  Spline interpolation in medical imaging: Comparison with other convolution-based approaches , 2000, 2000 10th European Signal Processing Conference.

[21]  Peter Hastreiter,et al.  GPU Accelerated Normalized Mutual Information and B-Spline Transformation , 2008, VCBM.

[22]  Haiying Liu,et al.  Measurement and analysis of brain deformation during neurosurgery , 2003, IEEE Transactions on Medical Imaging.

[23]  Guy B. Williams,et al.  Exceptionally fast non-linear 3D image registration using GPUs , 2009 .

[24]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[25]  Jens H. Krüger,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.

[26]  David Taniar,et al.  Computational Science and Its Applications - ICCSA 2005, International Conference, Singapore, May 9-12, 2005, Proceedings, Part I , 2005, ICCSA.

[27]  Gallagher Pryor,et al.  3D nonrigid registration via optimal mass transport on the GPU , 2009, Medical Image Anal..

[28]  Susan L. Graham Code Generation and Optimization , 1983, Method and tools for compiler construction.