Next generation CMOS compact models for RF and microwave applications

Commercial CMOS chips routinely operate at frequencies up to 5 GHz and exciting new opportunities exists in higher frequency bands such as 3-10 GHz, 17 GHz, 24 GHz, and 60 GHz. The Berkeley Wireless Research Center has demonstrated that standard 130 nm CMOS technology is capable of operation up to 60 GHz, enabling a host of new mm-wave applications such as Gb/s WLAN and compact radar imaging. Will circuit design and compact modeling continue along the same course, or is a new microwave design methodology required? This paper highlights the design and modeling challenges in moving up to these higher frequencies. A merger of RF and microwave design perspectives is used to offer insight into the problem. The paper discusses requirements for a next generation compact model to meet these challenges and offers potential solutions.

[1]  Ali M. Niknejad,et al.  A DC-10GHz linear-in-dB attenuator in 0.13 /spl mu/m CMOS technology , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[2]  Xiang Guan,et al.  A fully integrated 24-GHz eight-element phased-array receiver in silicon , 2004, IEEE Journal of Solid-State Circuits.

[3]  M.J. Deen,et al.  An effective gate resistance model for CMOS RF and noise modeling , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[4]  Mansun Chan,et al.  A robust and physical BSIM3 non-quasi-static transient and AC small-signal model for circuit simulation , 1998 .

[5]  D.B.M. Klaassen,et al.  A record high 150 GHz f/sub max/ realized at 0.18 /spl mu/m gate length in an industrial RF-CMOS technology , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[6]  Ali M. Niknejad,et al.  The next generation BSIM for sub-100nm mixed-signal circuit simulation , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[7]  R. van Langevelde,et al.  Effect of gate-field dependent mobility degradation on distortion analysis in MOSFETs , 1997 .

[8]  C. Enz,et al.  MOS transistor modeling for RF IC design , 2000, IEEE Journal of Solid-State Circuits.

[9]  Chenming Hu,et al.  An adjustable work function technology using Mo gate for CMOS devices , 2002, IEEE Electron Device Letters.

[10]  L. Lemaitre,et al.  Extensions to Verilog-A to support compact device modeling , 2003, Proceedings of the 2003 IEEE International Workshop on Behavioral Modeling and Simulation.

[11]  J. Wood,et al.  Bias-dependent linear, scalable millimeter-wave FET model , 2000, IMS 2000.

[12]  R. Brodersen,et al.  Design of CMOS for 60 GHz Applications , 2003 .

[13]  D.B.M. Klaassen,et al.  New compact model for induced gate current noise [MOSFET] , 2003, IEEE International Electron Devices Meeting 2003.

[14]  M. Silberstein,et al.  A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors , 2003, IEEE International Electron Devices Meeting 2003.

[15]  R.W. Brodersen,et al.  Design of CMOS for 60GHz applications , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[16]  R.W. Brodersen,et al.  Large-signal millimeter-wave CMOS modeling with BSIM3 , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[17]  D.B.M. Klaassen,et al.  Record RF performance of standard 90 nm CMOS technology , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[18]  J. Bokor,et al.  FinFET-a quasi-planar double-gate MOSFET , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).