Applications of Cascade Correlation Neural Networks for Cipher System Identification

Crypto System Identification is one of the challenging tasks in Crypt analysis. The paper discusses the possibility of employing Neural Networks for identification of Cipher Systems from cipher texts. Cascade Correlation Neural Network and Back Propagation Network have been employed for identification of Cipher Systems. Very large collection of cipher texts were generated using a Block Cipher (Enhanced RC6) and a Stream Cipher (SEAL). Promising results were obtained in terms of accuracy using both the Neural Network models but it was observed that the Cascade Correlation Neural Network Model performed better compared to Back Propagation Network. Keywords—Back Propagation Neural Networks, Cascade Correlation Neural Network, Crypto systems, Block Cipher, Stream Cipher.

[1]  Phillip Rogaway,et al.  A Software-Optimized Encryption Algorithm , 1998, Journal of Cryptology.

[2]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[3]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[4]  A.H.M. Ragab,et al.  Enhancements and implementation of RC6/sup TM/ block cipher for data security , 2001, Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239).