40 Gb/s Transimpedance-AGC Amplifier and CDR Circuit for Broadband Data Receivers in 90 nm CMOS

High-speed front-end amplifiers and CDR circuits play critical roles in broadband data receivers as the former needs to perform amplification at high data rate and the latter has to retime the data with the extracted low-jitter clock. In this paper, the design and experimental results of 40 Gb/s transimpedance-AGC amplifier and CDR circuit are described. The transimpedance amplifier incorporates reversed triple-resonance networks (RTRNs) and negative feedback in a common-gate configuration. A mathematical model is derived to facilitate the design and analysis of the RTRN, showing that the bandwidth is extended by a larger factor compared to using the shunt-series peaking technique, especially in cases when the parasitic capacitance is dominated by the next stage. Operating at 40 Gb/s, the amplifier provides an overall gain of 2 kOmega and a differential output swing of 520 mVpp with for input spanning from to . The measured integrated input-referred noise is 3.3muArms. The half-rate CDR circuit employs a direction-determined rotary-wave quadrature VCO to solve the bidirectional-rotation problem in conventional rotary-wave oscillators. This guarantees the phase sequence while negligibly affecting the phase noise. With 40 Gb/s 231 - 1 PRBS input, the recovered clock jitter is and 0.7psrms. The retimed data exhibits 13.3 pspp jitter with BER . Fabricated in 90 nm digital CMOS technology, the overall amplifier consumes 75 mW and the CDR circuit consumes 48 mW excluding the output buffers, all from a 1.2 V supply.

[1]  J.D.H. Alexander Clock recovery from random binary signals , 1975 .

[2]  M. Kardos,et al.  High-gain transimpedance amplifier in InP-based HBT technology for the receiver in 40-Gb/s optical-fiber TDM links , 2000, IEEE Journal of Solid-State Circuits.

[3]  N. Tzartzanis,et al.  A Reversible Poly-Phase Distributed VCO , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[4]  J. Long,et al.  A 10 Gb/s CDR/DEMUX with LC delay line VCO in 0.18 /spl mu/m CMOS , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[5]  Liang-Hung Lu,et al.  40-Gb/s High-Gain Distributed Amplifiers With Cascaded Gain Stages in 0.18-$\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[6]  Eduard Säckinger Broadband Circuits for Optical Fiber Communication: Säckinger/Broadband , 2005 .

[7]  B. Razavi,et al.  - Gb / s Limiting Amplifier and Laser / Modulator Driver in 0 . 18-m CMOS Technology , 2001 .

[8]  S. Lipa,et al.  Rotary traveling-wave oscillator arrays: a new clock technology , 2001 .

[9]  E. Sackinger,et al.  Broadband Circuits for Optical Fiber Communication , 2005 .

[10]  Behzad Razavi,et al.  40-Gb/s amplifier and ESD protection circuit in 0.18-/spl mu/m CMOS technology , 2004, IEEE Journal of Solid-State Circuits.

[11]  B. Razavi,et al.  10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology , 2003, IEEE J. Solid State Circuits.

[12]  A. Leven,et al.  An InGaAs-InP HBT differential transimpedance amplifier with 47-GHz bandwidth , 2003, IEEE Journal of Solid-State Circuits.

[13]  Ali Hajimiri,et al.  Capacity limits and matching properties of integrated capacitors , 2002, IEEE J. Solid State Circuits.

[14]  Shen-Iuan Liu,et al.  A 40Gb/s Transimpedance-AGC Amplifier with 19dB DR in 90nm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[15]  Liang-Hung Lu,et al.  40-Gb / s High-Gain Distributed Amplifiers With Cascaded Gain Stages in 0 . 18-m CMOS , 2009 .

[16]  Sorin P. Voinigescu,et al.  Erratum: 6-kΩ 43-Gb/s differential transimpedance-limiting amplifier with auto-zero feedback and high dynamic range (IEEE Journal Solid-State Circuits (Oct. 2004) 39 (1680-1689)) , 2004 .

[17]  Beomsup Kim,et al.  A low-phase-noise CMOS LC oscillator with a ring structure , 2000 .

[18]  S.P. Voinigescu,et al.  6-k/spl Omega/, 43-Gb/s differential transimpedance-limiting amplifier with auto-zero feedback and high dynamic range , 2003, 25th Annual Technical Digest 2003. IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2003..

[19]  G. Gonzalez Microwave Transistor Amplifiers: Analysis and Design , 1984 .

[20]  Kevin T. Kornegay,et al.  SiGe Using a Low-Voltage Logic Family , 2005 .

[21]  Behzad Razavi,et al.  A 40 Gb/s clock and data recovery circuit in 0.18 μm CMOS technology , 2003 .

[22]  K.T. Kornegay,et al.  Jitter considerations in the design of a 10-Gb/s automatic gain control amplifier , 2005, IEEE Transactions on Microwave Theory and Techniques.

[23]  H. Shigematsu,et al.  4 40 Gb / s CMOS Distributed Amplifier for Fiber-Optic Communication Systems , 2001 .

[24]  M. Rodwell,et al.  40Gb/s CMOS distributed amplifier for fiber-optic communication systems , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[25]  Jri Lee,et al.  11.3 A 7-Band 3-8GHz Frequency Synthesizer , 2005 .

[26]  H. Nosaka,et al.  A 39-to-45-Gbit/s multi-data-rate clock and data recovery circuit with a robust lock detector , 2004, IEEE Journal of Solid-State Circuits.

[27]  A. Leven,et al.  SiGe differential transimpedance amplifier with 50 GHz bandwidth , 2002, 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu.

[28]  Maurizio Salaris,et al.  Low-mass stellar models with new opacity tables and varying α-element enhancement factors , 2006, Proceedings of the International Astronomical Union.

[29]  Jun-De Jin,et al.  40-Gb/s Transimpedance Amplifier in 0.18-μm CMOS Technology , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[30]  J. Lee,et al.  A 40 Gb/s clock and data recovery circuit in 0.18 /spl mu/m CMOS technology , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[31]  Sorin P. Voinigescu,et al.  Correction to “6-k $Omega$ 43-Gb/s Differential Transimpedance-Limiting Amplifier With Auto-Zero Feedback and High Dynamic Range” , 2004 .

[32]  M.L. Schmatz,et al.  A 40-Gb/s, digitally programmable peaking limiting amplifier with 20-dB differential gain in 90-nm CMOS , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.