Adsorption Behaviors of CO, H2O, CH4, H2S, H2 and NH3 Gases on Cu-doped MoO3 Monolayer: a first-principles Study

[1]  Q. Fu,et al.  Influence of Pt or Au doping on improving the detection of CO by ZnO: A first-principles calculations study , 2023, Chemical Physics.

[2]  Lai Chen,et al.  Single Rh atom decorated pristine and S-defected PdS2 monolayer for sensing thermal runaway gases in a lithium-ion battery: a first-principles study , 2023, Surfaces and Interfaces.

[3]  M. Ranjbar,et al.  Optical hydrogen sensing by MoO3 films deposited by a facile flame synthesis method , 2023, Applied Surface Science.

[4]  S. Xie,et al.  Adsorptions of C5F10O decomposed compounds on the Cu-decorated NiS2 monolayer: a first-principles theory , 2023, Molecular Physics.

[5]  Q. Ning,et al.  Adsorption and sensing performances of Rh-embedded PtSe2 monolayer upon CO and HCHO in dry-type reactors: A first-principles study , 2022, Chemical Physics.

[6]  Miao Zhang,et al.  First principles study of Rh-doped SnO2 for highly sensitive and selective hydrogen detection , 2022, Sensors and Actuators A: Physical.

[7]  Pengzuo Chen,et al.  Copper Incorporated Molybdenum Trioxide Nanosheet Realizing High-Efficient Performance for Hydrogen Production , 2022, Catalysts.

[8]  B. Hong,et al.  Nanocasting synthesis and highly-improved toluene gas-sensing performance of Co3O4 nanowires with high-valence Sn-doping , 2022, Chemical Physics.

[9]  P. Koralli,et al.  Efficient CO sensing by a CuO:Au nanocomposite thin film deposited by PLD on a Pyrex tube , 2021, Sensors and Actuators A: Physical.

[10]  K. Shrivas,et al.  Hydrothermally Grown α-MoO3 Microfibers for Photocatalytic Degradation of Methylene Blue Dye , 2021, Journal of Molecular Liquids.

[11]  Chao Wang,et al.  LaNbO4 as an electrode material for mixed-potential CO gas sensors , 2021, Sensors and Actuators B: Chemical.

[12]  Chris-Kriton Skylaris,et al.  Intercalation voltages for spinel LixMn2O4 (0≤x≤2) cathode materials: Calibration of calculations with the ONETEP linear-scaling DFT code , 2021, Materials Today Communications.

[13]  N. Duy,et al.  Porous In2O3 nanorods fabricated by hydrothermal method for an effective CO gas sensor , 2021 .

[14]  R. Rashid,et al.  Enhancing the temporal response of modified porous silicon-based CO gas sensor , 2021 .

[15]  Vipin Kumar,et al.  The interaction of two-dimensional P2SiS nanosheet with environmental toxic NCG molecules for sensor application: A DFT study , 2021 .

[16]  W. Xue,et al.  Selective methane sensing properties of VO2 at different temperatures: A first principles study , 2021 .

[17]  G. Lu,et al.  High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers , 2020 .

[18]  Hongming Zhou,et al.  Adsorption and diffusion behaviors of H2, H2S, NH3, CO and H2O gases molecules on MoO3 monolayer: A DFT study , 2020 .

[19]  H. Cui,et al.  Adsorption of SO2 and NO2 molecule on intrinsic and Pd-doped HfSe2 monolayer: A first-principles study , 2020 .

[20]  W. Xue,et al.  Predicting gases sensing performance of α-MoO3 from nano-structural and electronic properties , 2020 .

[21]  Jong-Ho Lee,et al.  Improved CO gas detection of Si MOSFET gas sensor with catalytic Pt decoration and pre-bias effect , 2019 .

[22]  W. Xue,et al.  Insight into silicon-carbon multilayer films as anode materials for lithium-ion batteries: A combined experimental and first principles study , 2019, Acta Materialia.

[23]  A. Feng,et al.  Enhanced gas sensing performance of polyaniline incorporated with graphene: A first-principles study , 2019, Physics Letters A.

[24]  Fengmin Liu,et al.  The role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen species , 2018, Sensors and Actuators B: Chemical.

[25]  W. Xue,et al.  Silicon Oxycarbide-Derived Carbon as Potential NO2 Gas Sensor: A First Principles’ Study , 2018, IEEE Electron Device Letters.

[26]  Santosh S. Patil,et al.  Ce doped NiO nanoparticles as selective NO 2 gas sensor , 2018 .

[27]  W. Xue,et al.  Atomic investigation on reversible lithium storage in amorphous silicon oxycarbide as a high power anode material , 2016 .

[28]  Dan Han,et al.  Enhanced methanol gas-sensing performance of Ce-doped In2O3 porous nanospheres prepared by hydrothermal method , 2015 .

[29]  丁丁,et al.  TiO x /SiO 2 复合载体上高分散Au催化剂的CO氧化性能 , 2015 .

[30]  T. Wang,et al.  One-step synthesis and highly gas-sensing properties of hierarchical Cu-doped SnO2 nanoflowers , 2015 .

[31]  W. Xue,et al.  Effect of carbon content on the structure and electronic properties of silicon oxycarbide anodes for lithium-ion batteries: a first-principles study , 2015 .

[32]  N. Yamazoe,et al.  Cu-doped α-Fe2O3 hierarchical microcubes: Synthesis and gas sensing properties , 2014 .

[33]  J. H. Lee,et al.  Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview , 2014 .

[34]  Wojtek Wlodarski,et al.  Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: Application for H2 gas sensing , 2014 .

[35]  Guoxiong Wang,et al.  Effect of preparation atmosphere of Pt–SnOx/C catalysts on the catalytic activity for H2/CO electro-oxidation , 2010 .

[36]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[37]  Seong‐Hyeon Hong,et al.  CO gas sensing properties in Pd-added ZnO sensors , 2009 .

[38]  F. Sedona,et al.  Chemisorption of CO on au/TiO(x)/Pt(111) model catalysts with different stoichiometry and defectivity. , 2008, Journal of Nanoscience and Nanotechnology.

[39]  J. Fergus Perovskite oxides for semiconductor-based gas sensors , 2007 .

[40]  Hao Gong,et al.  Nano-crystalline Cu-doped ZnO thin film gas sensor for CO , 2006 .

[41]  Wojtek Wlodarski,et al.  Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants , 2003 .

[42]  A. Ayesh The Effect of Doping Mose2 by Clusters of Noble Metals on its Adsorption for Nh3 , 2022, Social Science Research Network.

[43]  Thorsten Wagner,et al.  Nanostructured Co3O4 as a CO gas sensor: Temperature-dependent behavior , 2015 .