Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects

The social brain hypothesis posits that the cognitive demands of social behaviour have driven evolutionary expansions in brain size in some vertebrate lineages. In insects, higher brain centres called mushroom bodies are enlarged and morphologically elaborate (having doubled, invaginated and subcompartmentalized calyces that receive visual input) in social species such as the ants, bees and wasps of the aculeate Hymenoptera, suggesting that the social brain hypothesis may also apply to invertebrate animals. In a quantitative and qualitative survey of mushroom body morphology across the Hymenoptera, we demonstrate that large, elaborate mushroom bodies arose concurrent with the acquisition of a parasitoid mode of life at the base of the Euhymenopteran (Orussioidea + Apocrita) lineage, approximately 90 Myr before the evolution of sociality in the Aculeata. Thus, sociality could not have driven mushroom body elaboration in the Hymenoptera. Rather, we propose that the cognitive demands of host-finding behaviour in parasitoids, particularly the capacity for associative and spatial learning, drove the acquisition of this evolutionarily novel mushroom body architecture. These neurobehavioural modifications may have served as pre-adaptations for central place foraging, a spatial learning-intensive behaviour that is widespread across the Aculeata and may have contributed to the multiple acquisitions of sociality in this taxon.

[1]  W. J. Lewis,et al.  Discrimination of previously searched, host-free sites byMicroplitis croceipes (Hymenoptera: Braconidae) , 1993, Journal of Insect Behavior.

[2]  M. Walton,et al.  A review of methods for determining dietary range in adult parasitoids , 1992, Entomophaga.

[3]  Wei Zhang,et al.  Experience Improves Feature Extraction in Drosophila , 2007, The Journal of Neuroscience.

[4]  Irina Sinakevitch,et al.  Ground plan of the insect mushroom body: Functional and evolutionary implications , 2009, The Journal of comparative neurology.

[5]  G. Striedter Principles of brain evolution. , 2005 .

[6]  W. Szymanowski,et al.  BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES , 1953 .

[7]  J. Whitfield Phylogenetic insights into the evolution of parasitism in hymenoptera. , 2003, Advances in parasitology.

[8]  M. Seid,et al.  Socially induced brain development in a facultatively eusocial sweat bee Megalopta genalis (Halictidae) , 2010, Proceedings of the Royal Society B: Biological Sciences.

[9]  Randolf Menzel,et al.  Adaptation of microglomerular complexes in the honeybee mushroom body lip to manipulations of behavioral maturation and sensory experience , 2008, Developmental neurobiology.

[10]  S. O’Donnell,et al.  Mushroom Body Volume Is Related to Social Aggression and Ovary Development in the Paperwasp Polistes instabilis , 2007, Brain, Behavior and Evolution.

[11]  J. Whitfield,et al.  Phylogeny and evolution of host-parasitoid interactions in hymenoptera. , 1998, Annual review of entomology.

[12]  F. Dyer,et al.  The role of orientation flights on homing performance in honeybees. , 1999, The Journal of experimental biology.

[13]  W. Gronenberg,et al.  Brain Size: A Global or Induced Cost of Learning? , 2009, Brain, Behavior and Evolution.

[14]  N. Strausfeld,et al.  Multimodal efferent and recurrent neurons in the medial lobes of cockroach mushroom bodies , 1999, The Journal of comparative neurology.

[15]  Elizabeth A. Tibbetts,et al.  Robust long-term social memories in a paper wasp , 2008, Current Biology.

[16]  R. Wehner,et al.  Navigation in wood ants Formica japonica: context dependent use of landmarks , 2004, Journal of Experimental Biology.

[17]  D. Papaj,et al.  Odor learning and foraging success in the parasitoid,Leptopilina heterotoma , 1990, Journal of Chemical Ecology.

[18]  E. Tibbetts Visual signals of individual identity in the wasp Polistes fuscatus , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[19]  S. Willemstein,et al.  AN EVOLUTIONARY BASIS FOR POLLINATION ECOLOGY , 1989 .

[20]  R. Menzel,et al.  Honey bees navigate according to a map-like spatial memory. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Thomas J. Lisney,et al.  Variation in Brain Organization and Cerebellar Foliation in Chondrichthyans: Sharks and Holocephalans , 2007, Brain, Behavior and Evolution.

[22]  P. Howse,et al.  Brain structure and behavior in insects. , 1975, Annual review of entomology.

[23]  D. Borror,et al.  Borror and DeLong's introduction to the study of insects , 2004 .

[24]  Wanhe Li,et al.  Short- and Long-Term Memory in Drosophila Require cAMP Signaling in Distinct Neuron Types , 2009, Current Biology.

[25]  V. L. Svidersky,et al.  On structural-functional organization of dragonfly mushroom bodies and some general considerations about purpose of these formations , 2004, Journal of Evolutionary Biochemistry and Physiology.

[26]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[27]  W. Gronenberg,et al.  Multisensory Convergence in the Mushroom Bodies of Ants and Bees , 2004, Acta biologica Hungarica.

[28]  Richard W. Byrne,et al.  Sociality, Evolution and Cognition , 2007, Current Biology.

[29]  Robin I. M. Dunbar,et al.  The evolution of the social brain: anthropoid primates contrast with other vertebrates , 2007, Proceedings of the Royal Society B: Biological Sciences.

[30]  W. Lewis,et al.  Learning of Host-Finding Cues by Hymenopterous Parasitoids , 1993 .

[31]  Lars Chittka,et al.  Traplining in bumblebees (Bombus impatiens): a foraging strategy’s ontogeny and the importance of spatial reference memory in short-range foraging , 2007, Oecologia.

[32]  Robin I. M. Dunbar,et al.  EVIDENCE FOR COEVOLUTION OF SOCIALITY AND RELATIVE BRAIN SIZE IN THREE ORDERS OF MAMMALS , 2007, Evolution; international journal of organic evolution.

[33]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[34]  Angelique C Paulk,et al.  Higher order visual input to the mushroom bodies in the bee, Bombus impatiens. , 2008, Arthropod structure & development.

[35]  Robin I. M. Dunbar,et al.  Both social and ecological factors predict ungulate brain size , 2006, Proceedings of the Royal Society B: Biological Sciences.

[36]  S. Nouhuys,et al.  Wasp behavior leads to uniform parasitism of a host available only a few hours per year , 2004 .

[37]  W. Gronenberg,et al.  Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera) , 2002, The Journal of comparative neurology.

[38]  D. Borror,et al.  An introduction to the study of insects , 1954 .

[39]  Ronald R. Hoy,et al.  Mushroom bodies of vespid wasps , 2000, The Journal of comparative neurology.

[40]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[41]  W. Gronenberg,et al.  Mushroom body volumes and visual interneurons in ants: Comparison between sexes and castes , 2004, The Journal of comparative neurology.

[42]  E. Wilson,et al.  Eusociality: origin and consequences. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Menzel,et al.  A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal‐calycal tract , 2003, The Journal of comparative neurology.

[44]  Nicholas J. Strausfeld,et al.  A new role for the insect mushroom bodies: place memory and motor control , 1993 .

[45]  R. Menzel,et al.  Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. , 1994, Behavioral and neural biology.

[46]  J. Devaud,et al.  Long-Term Memory Leads to Synaptic Reorganization in the Mushroom Bodies: A Memory Trace in the Insect Brain? , 2010, The Journal of Neuroscience.

[47]  C. Wall,et al.  Sociality, ecology, and relative brain size in lemurs. , 2009, Journal of human evolution.

[48]  Wulfila Gronenberg,et al.  Brain Allometry in Bumblebee and Honey Bee Workers , 2005, Brain, Behavior and Evolution.

[49]  D. Grimaldi,et al.  Evolution of the insects , 2005 .

[50]  T. Markow Reproductive behavior of Drosophila melanogaster and D. nigrospiracula in the field and in the laboratory. , 1988, Journal of comparative psychology.

[51]  N. Strausfeld Organization of the honey bee mushroom body: Representation of the calyx within the vertical and gamma lobes , 2002, The Journal of comparative neurology.

[52]  S. O’Donnell,et al.  Age, sex, and dominance‐related mushroom body plasticity in the paperwasp Mischocyttarus mastigophorus , 2008, Developmental neurobiology.

[53]  Feng Yu,et al.  Mushroom bodies modulate salience‐based selective fixation behavior in Drosophila , 2008, The European journal of neuroscience.

[54]  S. Farris Tritocerebral tract input to the insect mushroom bodies. , 2008, Arthropod structure & development.

[55]  Rüdiger Wehner,et al.  Delayed axonal pruning in the ant brain: A study of developmental trajectories , 2009, Developmental neurobiology.

[56]  A. Panov General structure of the mushroom body calyx in brachycera orthorrhapha flies (Diptera) , 2009, Biology Bulletin.

[57]  A. Austin,et al.  Molecular phylogeny of the insect order Hymenoptera: apocritan relationships. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Wehner,et al.  Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis , 2010, Developmental neurobiology.

[59]  J. Rosenheim Host location and exploitation by the cleptoparasitic wasp Argochrysis armilla: the role of learning (Hymenoptera: Chrysididae) , 1987, Behavioral Ecology and Sociobiology.

[60]  W. Gronenberg Subdivisions of hymenopteran mushroom body calyces by their afferent supply , 2001, The Journal of comparative neurology.

[61]  L. Lefebvre,et al.  Big brains, enhanced cognition, and response of birds to novel environments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Nancy F Day,et al.  Experience‐dependent plasticity in the mushroom bodies of the solitary bee Osmia lignaria (Megachilidae) , 2008, Developmental neurobiology.

[63]  Troy Zars,et al.  Spatial orientation in Drosophila , 2009, Journal of neurogenetics.

[64]  W. Rössler,et al.  Caste-specific postembryonic development of primary and secondary olfactory centers in the female honeybee brain. , 2008, Arthropod structure & development.

[65]  Martin Heisenberg,et al.  Memories in drosophila heat-box learning. , 2002, Learning & memory.

[66]  J. H. Hunt TRAIT MAPPING AND SALIENCE IN THE EVOLUTION OF EUSOCIAL VESPID WASPS , 1999, Evolution; international journal of organic evolution.

[67]  B. Brembs,et al.  Context and occasion setting in Drosophila visual learning. , 2006, Learning & memory.

[68]  S. Farris Structural, Functional and Developmental Convergence of the Insect Mushroom Bodies with Higher Brain Centers of Vertebrates , 2008, Brain, Behavior and Evolution.

[69]  N. Strausfeld,et al.  Evolution, discovery, and interpretations of arthropod mushroom bodies. , 1998, Learning & memory.

[70]  M. O'Shea,et al.  Pentapeptide (proctolin) associated with an identified neuron. , 1981, Science.

[71]  L. Lefebvre,et al.  Brain size, innovative propensity and migratory behaviour in temperate Palaearctic birds , 2005, Proceedings of the Royal Society B: Biological Sciences.

[72]  F. C. Kenyon The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda , 1896 .

[73]  Susanne Schulmeister Simultaneous analysis of basal Hymenoptera (Insecta): introducing robust-choice sensitivity analysis , 2003 .

[74]  John A. Kiernan,et al.  Histological and Histochemical Methods: Theory and Practice , 1981 .

[75]  S. O’Donnell,et al.  Brain organization mirrors caste differences, colony founding and nest architecture in paper wasps (Hymenoptera: Vespidae) , 2009, Proceedings of the Royal Society B: Biological Sciences.

[76]  J. Steidle Learning pays off: influence of experience on host finding and parasitism in Lariophagus distinguendus , 1998 .

[77]  Robin I. M. Dunbar,et al.  Evolution of the Social Brain , 2003, Science.

[78]  S. Farris,et al.  Coevolution of generalist feeding ecologies and gyrencephalic mushroom bodies in insects. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[79]  B. Brembs,et al.  Attention-Like Deficit and Hyperactivity in a Drosophila Memory Mutant , 2010, Journal of Neuroscience.

[80]  W. Gronenberg,et al.  Morphologic representation of visual and antennal information in the ant brain , 1999, The Journal of comparative neurology.

[81]  P. Mobbs The Brain of the Honeybee Apis Mellifera. I. The Connections and Spatial Organization of the Mushroom Bodies , 1982 .

[82]  N. Strausfeld,et al.  Mushroom bodies of the cockroach: Their participation in place memory , 1998, The Journal of comparative neurology.

[83]  M Heisenberg,et al.  Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning. , 1998, Learning & memory.

[84]  Ronald L. Davis,et al.  Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory , 1993, Neuron.

[85]  T. Roat,et al.  Temporal and morphological differences in post-embryonic differentiation of the mushroom bodies in the brain of workers, queens, and drones of Apis mellifera (Hymenoptera, Apidae). , 2008, Micron.

[86]  L. Vilhelmsen Phylogeny and classification of the extant basal lineages of the Hymenoptera (Insecta) , 2001 .

[87]  G. Robinson,et al.  Expansion of the neuropil of the mushroom bodies in male honey bees is coincident with initiation of flight , 1997, Neuroscience Letters.

[88]  R A Barton,et al.  Neocortex size and behavioural ecology in primates , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[89]  S. Farris Evolution of insect mushroom bodies: old clues, new insights , 2005 .

[90]  G. Robinson,et al.  Selective neuroanatomical plasticity and division of labour in the honeybee , 1993, Nature.

[91]  J. Woolley,et al.  Phylogenetics and classification of Chalcidoidea and Mymarommatoidea — a review of current concepts (Hymenoptera, Apocrita) , 1999 .

[92]  J. Lucas,et al.  Does hippocampal size correlate with the degree of caching specialization? , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[93]  Natalie M. Myres,et al.  Distinctive Paleo-Indian Migration Routes from Beringia Marked by Two Rare mtDNA Haplogroups , 2009, Current Biology.

[94]  R. Davis,et al.  The Role of Drosophila Mushroom Body Signaling in Olfactory Memory , 2001, Science.

[95]  THE EFFECT OF MINIATURIZED BODY SIZE ON SKELETAL MORPHOLOGY IN FROGS , 2002, Evolution; international journal of organic evolution.

[96]  J. Carpenter Phylogeny of Aculeata: Chrysidoidea and Vespoidea (Hymenoptera) , 1993 .

[97]  Nicole D. VanderSal Rapid spatial learning in a velvet ant (Dasymutilla coccineohirta) , 2008, Animal Cognition.

[98]  B. Brembs Mushroom Bodies Regulate Habit Formation in Drosophila , 2009, Current Biology.

[99]  L. Lefebvre,et al.  Brains, Innovations and Evolution in Birds and Primates , 2004, Brain, Behavior and Evolution.

[100]  T. Jones,et al.  Developmental and dominance‐associated differences in mushroom body structure in the paper wasp Mischocyttarus mastigophorus , 2007, Developmental neurobiology.

[101]  H. Godfray,et al.  Parasitoids: Behavioral and Evolutionary Ecology , 1993 .

[102]  J. J. Flynn,et al.  Brain-size evolution and sociality in Carnivora , 2009, Proceedings of the National Academy of Sciences.

[103]  K. Schildberger,et al.  Multimodal interneurons in the cricket brain: properties of identified extrinsic mushroom body cells , 2004, Journal of Comparative Physiology.

[104]  Eric J. Warrant,et al.  Nocturnal Vision and Landmark Orientation in a Tropical Halictid Bee , 2004, Current Biology.

[105]  N. Strausfeld,et al.  Morphology and sensory modality of mushroom body extrinsic neurons in the brain of the cockroach, Periplaneta americana , 1997, The Journal of comparative neurology.

[106]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[107]  Susanne Schulmeister Review of morphological evidence on the phylogeny of basal Hymenoptera (Insecta), with a discussion of the ordering of characters , 2003 .

[108]  J. Sivinski Mushroom body development in nymphalid butterflies: A correlate of learning? , 1989, Journal of Insect Behavior.

[109]  T. Waterman The Analysis of Spatial Orientation , 1963 .

[110]  M. V. Srinivasan,et al.  Honeybee Memory: Navigation by Associative Grouping and Recall of Visual Stimuli , 1999, Neurobiology of Learning and Memory.

[111]  S. Ott,et al.  Gregarious desert locusts have substantially larger brains with altered proportions compared with the solitarious phase , 2010, Proceedings of the Royal Society B: Biological Sciences.

[112]  S. Wang,et al.  Brain Architecture and Social Complexity in Modern and Ancient Birds , 2004, Brain, Behavior and Evolution.

[113]  N. Strausfeld,et al.  A unique mushroom body substructure common to basal cockroaches and to termites , 2003, The Journal of comparative neurology.

[114]  Roberto Romani,et al.  Host location and oviposition in a basal group of parasitic wasps: the subgenual organ, ovipositor apparatus and associated structures in the Orussidae (Hymenoptera, Insecta) , 2001, Zoomorphology.

[115]  R. Kaartinen,et al.  A parasitoid wasp uses landmarks while monitoring potential resources , 2008, Proceedings of the Royal Society B: Biological Sciences.

[116]  T. Collett,et al.  The guidance of desert ants by extended landmarks. , 2001, The Journal of experimental biology.

[117]  N. Strausfeld,et al.  The mushroom bodies of Drosophila melanogaster: An immunocytological and golgi study of Kenyon cell organization in the calyces and lobes , 2003, Microscopy research and technique.

[118]  V. L. Svidersky,et al.  On structural-functional organization of dragonfly mushroom bodies and some general considerations about purpose of these formations , 2004, Journal of Evolutionary Biochemistry and Physiology.