Patient-Specific Cardiac Parametrization from Eikonal Simulations

Simulations in cardiac electrophysiology use the bidomain equations to describe the electrical potential in the heart. If only the electrical activation sequence in the heart is needed, then the full bidomain equations can be substituted by the Eikonal equation which allows much faster responses w.r.t. the changed material parameters in the equation. We use our Eikonal solver optimized for memory usage and parallelization. Patient-specific simulations in cardiac electrophysiology require patient-specific conductivity parameters which are not accurately available in vivo. One chance to improve the given conductivity parameters consists in comparing the computed activation sequence on the heart surface with the measured ECG on the torso mapped onto this surface. By minimizing the squared distance between the measured solution and the Eikonal computed solution we are able to determine the material parameters more accurately. To reduce the number of optimization parameters in this process, we group the material parameters and introduce a specific scaling parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _k$$\end{document} for each group. The minimization takes place w.r.t. the scaling \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma }$$\end{document}. We solve the minimization problem by the BFGS method and adaptive step size control. The required gradient \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla _\gamma f({\gamma })$$\end{document} is computed either via finite differences or algorithmic differentiation using in tangent as well as in adjoint mode. We present convergence behavior as well as runtime and scaling results.

[1]  Gundolf Haase,et al.  Fast many-core solvers for the Eikonal equations in cardiovascular simulations , 2016, 2016 International Conference on High Performance Computing & Simulation (HPCS).

[2]  Marcus M. Noack A two-scale method using a list of active sub-domains for a fully parallelized solution of wave equations , 2015, J. Comput. Sci..

[3]  Uwe Naumann,et al.  Hybrid approaches to adjoint code generation with dco/c++ , 2016 .

[4]  Uwe Naumann,et al.  A Discrete Adjoint Model for OpenFOAM , 2013, ICCS.

[5]  Uwe Naumann,et al.  Adjoint Algorithmic Differentiation of a GPU Accelerated Application , 2013 .

[6]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[7]  Henri Calandra,et al.  First-arrival traveltime tomography based on the adjoint-state method , 2009 .

[8]  Adrian Sali,et al.  Coupling of Monodomain and Eikonal Models for Cardiac Electrophysiology , 2016 .

[9]  Gundolf Haase,et al.  A massively parallel Eikonal solver on unstructured meshes , 2018, Comput. Vis. Sci..

[10]  Gundolf Haase,et al.  Reducing the Memory Footprint of an Eikonal Solver , 2017, 2017 International Conference on High Performance Computing & Simulation (HPCS).

[11]  Uwe Naumann,et al.  Algorithmic Differentiation of a Complex C++ Code with Underlying Libraries , 2013, ICCS.

[12]  Ross T. Whitaker,et al.  A Fast Iterative Method for Solving the Eikonal Equation on Tetrahedral Domains , 2013, SIAM J. Sci. Comput..

[13]  Uwe Naumann,et al.  Algorithmic Differentiation of Numerical Methods , 2015, ACM Trans. Math. Softw..

[14]  Ross T. Whitaker,et al.  A Fast Iterative Method for Solving the Eikonal Equation on Triangulated Surfaces , 2011, SIAM J. Sci. Comput..

[15]  U. Naumann,et al.  Meta Adjoint Programming in C + + , 2017 .

[16]  Alexander Mitsos,et al.  Higher-order Discrete Adjoint ODE Solver in C++ for Dynamic Optimization , 2015, ICCS.

[17]  Uwe Naumann,et al.  The Art of Differentiating Computer Programs - An Introduction to Algorithmic Differentiation , 2012, Software, environments, tools.

[18]  Andreas Griewank,et al.  Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation , 2000, TOMS.

[19]  Mark Potse,et al.  Evaluation of a Rapid Anisotropic Model for ECG Simulation , 2017, Front. Physiol..

[20]  Paul D. Hovland,et al.  Reverse-mode algorithmic differentiation of an OpenMP-parallel compressible flow solver , 2019, The international journal of high performance computing applications.

[21]  Ross T. Whitaker,et al.  A Fast Iterative Method for Eikonal Equations , 2008, SIAM J. Sci. Comput..

[22]  Laurent Hascoët,et al.  The Tapenade automatic differentiation tool: Principles, model, and specification , 2013, TOMS.

[23]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[24]  Uwe Naumann,et al.  Discrete Adjoints of PETSc through dco/c++ and Adjoint MPI , 2013, Euro-Par.