Herschel PEP/HerMES: the redshift evolution (0 ≤ z ≤ 4) of dust attenuation and of the total (UV+IR) star formation rate density

Using new homogeneous luminosity functions (LFs) in the far-ultraviolet (FUV) from VVDS and in the far-infrared (FIR) from Herschel/PEP and Herschel/HerMES, we studied the evolution of the dust attenuation with redshift. With this information, we were able to estimate the redshift evolution of the total (FUV + FIR) star formation rate density (SFRDTOT). By integrating SFRDTOT, we followed the mass building and analyzed the redshift evolution of the stellar mass density (SMD). This article aims at providing a complete view of star formation from the local Universe to z ~ 4 and, using assumptions on earlier star formation history, compares this evolution with previously published data in an attempt to draw a homogeneous picture of the global evolution of star formation in galaxies. Our main conclusions are that: 1) the dust attenuation AFUV is found to increase from z = 0 to z ~ 1.2 and then starts to decrease until our last data point at z = 3.6; 2) the estimated SFRD confirms published results to z ~ 2. At z > 2, we observe either a plateau or a small increase up to z ~ 3 and then a likely decrease up to z = 3.6; 3) the peak of AFUV is delayed with respect to the plateau of SFRDTOT and a probable origin might be found in the evolution of the bright ends of the FUV and FIR LFs; 4) using assumptions (exponential rise and linear rise with time) for the evolution of the star formation density from z = 3.6 to zform = 10, we integrated SFRDTOT and obtained a good agreement with the published SMDs.

[1]  Spain.,et al.  Star formation and dust attenuation properties in galaxies from a statistical ultraviolet‐to‐far‐infrared analysis , 2005, astro-ph/0504434.

[2]  Cambridge,et al.  The evolution of stellar mass and the implied star formation history , 2008, 0801.1594.

[3]  H. Ferguson,et al.  The rising star formation histories of distant galaxies and implications for gas accretion with time , 2010, 1007.4554.

[4]  B. Robertson,et al.  CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION , 2011, 1109.0990.

[5]  Douglas Scott,et al.  A UNIFIED EMPIRICAL MODEL FOR INFRARED GALAXY COUNTS BASED ON THE OBSERVED PHYSICAL EVOLUTION OF DISTANT GALAXIES , 2012, 1208.6512.

[6]  Jonathan P. Williams,et al.  PRECISE IDENTIFICATIONS OF SUBMILLIMETER GALAXIES: MEASURING THE HISTORY OF MASSIVE STAR-FORMING GALAXIES TO z > 5,, , 2012, 1209.1626.

[7]  C. Conselice,et al.  The structures of distant galaxies – I. Galaxy structures and the merger rate to z∼ 3 in the Hubble Ultra-Deep Field , 2007, 0711.2333.

[8]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[9]  T. Takeuchi,et al.  The infrared emission of ultraviolet-selected galaxies from z = 0 to z = 1 , 2009, 0907.2819.

[10]  Toulouse,et al.  Properties of z ~ 3–6 Lyman break galaxies - I. Testing star formation histories and the SFR-mass relation with ALMA and near-IR spectroscopy , 2012, 1207.3074.

[11]  Edinburgh,et al.  A REDSHIFT SURVEY OF HERSCHEL FAR-INFRARED SELECTED STARBURSTS AND IMPLICATIONS FOR OBSCURED STAR FORMATION , 2012, 1210.4928.

[12]  UV dust attenuation in normal star-forming galaxies. I. Estimating the L_TIR/L_FUV ratio , 2005, astro-ph/0510165.

[13]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[14]  B. Magnelli,et al.  PACS Evolutionary Probe (PEP) – a Herschel key program , 2011, 1106.3285.

[15]  M. Katsuma THEORETICAL REACTION RATES OF 12C(α, γ)16O BELOW T9 = 3 , 2012 .

[16]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[17]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[18]  B. Garilli,et al.  Mid- and far-infrared luminosity functions and galaxy evolution from multiwavelength Spitzer observations up to z ~ 2.5 , 2009, 0910.5649.

[19]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[20]  K. Finlator,et al.  Galaxy evolution in cosmological simulations with outflows ― I. Stellar masses and star formation rates , 2011, 1103.3528.

[21]  H. Hildebrandt,et al.  The UV galaxy luminosity function at z = 3–5 from the CFHT Legacy Survey Deep fields , 2010, 1009.0758.

[22]  L. Pentericci,et al.  The evolving slope of the stellar mass function at 0.6 ≤ z < 4.5 from deep WFC3 data , 2011, 1111.5728.

[23]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[24]  Star Formation in AEGIS Field Galaxies since z = 1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion , 2007, astro-ph/0703056.

[25]  S. Okamura,et al.  STELLAR POPULATIONS OF Lyα EMITTERS AT z ∼ 6–7: CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS FROM GALAXY BUILDING BLOCKS , 2010, 1004.0963.

[26]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[27]  The evolution of the ultraviolet and infrared luminosity densities in the universe at 0 , 2005, astro-ph/0508124.

[28]  A. Andersen,et al.  Stellar sources of dust in the high-redshift Universe , 2009, 0905.1691.

[29]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[30]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[31]  F. Fraternali,et al.  Estimating gas accretion in disc galaxies using the Kennicutt–Schmidt law , 2012, 1207.0093.

[32]  A. Cimatti,et al.  THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES , 2011, 1106.1186.

[33]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[34]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[35]  D. L. Clements,et al.  HerMES: deep number counts at 250 μm, 350 μm and 500 μm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background , 2012, 1203.1925.

[36]  P. Hopkins,et al.  Submillimetre galaxies in a hierarchical universe: number counts, redshift distribution, and implications for the IMF , 2012, 1209.2413.

[37]  D. Maccagni,et al.  The Star Formation Rate Density and Dust Attenuation Evolution over 12 Gyr with the VVDS Surveys , 2011, 1109.1005.

[38]  D. Elbaz,et al.  Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer , 2011, 1101.2467.

[39]  T. Takeuchi,et al.  REEXAMINATION OF THE INFRARED EXCESS–ULTRAVIOLET SLOPE RELATION OF LOCAL GALAXIES , 2012, 1206.3905.

[40]  A. Cimatti,et al.  The Herschel* PEP/HerMES luminosity function - I. Probing the evolution of PACS selected Galaxies to z ≃ 4 , 2013, 1302.5209.

[41]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[42]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[43]  J. Dunlop,et al.  KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY , 2012, 1208.3529.

[44]  G. Cresci,et al.  THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS , 2009, 0912.1858.

[45]  A. Dekel,et al.  On the puzzling plateau in the specific star formation rate at z= 2–7 , 2011, 1103.3011.

[46]  O. Ilbert,et al.  HerMES: unveiling obscured star formation – the far-infrared luminosity function of ultraviolet-selected galaxies at z ∼ 1.5 , 2012, 1211.4336.

[47]  M. Vaccari,et al.  Galaxy evolution from deep multi-wavelength infrared surveys: a prelude to Herschel , 2009, 0906.4264.

[48]  Y. Inoue,et al.  REVISITING THE COSMIC STAR FORMATION HISTORY: CAUTION ON THE UNCERTAINTIES IN DUST CORRECTION AND STAR FORMATION RATE CONVERSION , 2012, 1208.0489.

[49]  Andrew M. Hopkins,et al.  THE STAR FORMATION RATE IN THE REIONIZATION ERA AS INDICATED BY GAMMA-RAY BURSTS , 2009, 0906.0590.

[50]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[51]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[52]  M. Franx,et al.  STAR FORMATION RATES AND STELLAR MASSES OF z = 7–8 GALAXIES FROM IRAC OBSERVATIONS OF THE WFC3/IR EARLY RELEASE SCIENCE AND THE HUDF FIELDS , 2009, 0911.1356.

[53]  E. Dwek,et al.  THE ORIGIN OF DUST IN THE EARLY UNIVERSE: PROBING THE STAR FORMATION HISTORY OF GALAXIES BY THEIR DUST CONTENT , 2010, 1011.1303.