50-Year-Old Curiosities: Ancillarity and Inference in Capture–Recapture Models

We review developments from the late 1950s, starting with the work of John Darroch, that led to the models of Cormack [Biometrika 51 (1964) 429–438], Jolly [Biometrika 52 (1965) 225–247] and Seber [Biometrika 52 (1965) 249–259] that are commemorated in this volume. We emphasize some of the fundamental contributions that were pivotal and often ahead of their time.We look at how these early contributions helped to shape the field and illustrate important concepts in statistics, including sufficiency, ancillarity, partial likelihoods, missing data and model fitting in the presence of latent variables. We also identify two curiosities. The first is the longheld and mistaken belief that the maximum likelihood estimators for various capture–recapture models are in common. Using various notions of ancillarity, we show that the maximum likelihood estimators from partial models (like the Cormack–Jolly–Seber model) will in general differ from full likelihood approaches (such as the Jolly–Seber model). The second is the belief that model specification in terms of latent variables is a relatively recent advance. We highlight how Jolly (1965) used a state-space model to describe the problem, using latent variables to separate the capture and mortality processes. We show how Markov chain Monte Carlo can be used to fit this model and how it relates to other capture–recapture models specified in terms of latent variables.

[1]  David Draper,et al.  Inference and Hierarchical Modeling in the Social Sciences , 1995 .

[2]  R. Cormack Estimates of survival from the sighting of marked animals , 1964 .

[3]  David R. Anderson,et al.  Modeling Survival and Testing Biological Hypotheses Using Marked Animals: A Unified Approach with Case Studies , 1992 .

[4]  Carl J. Schwarz,et al.  A General Methodology for the Analysis of Capture-Recapture Experiments in Open Populations , 1996 .

[5]  Thomas A. Severini,et al.  Information and Conditional Inference , 1995 .

[6]  Malay Ghosh,et al.  ANCILLARY STATISTICS: A REVIEW , 2010 .

[7]  J. Nichols,et al.  Statistical inference for capture-recapture experiments , 1992 .

[8]  G. Seber A review of estimating animal abundance. , 1986, Biometrics.

[9]  R. Cormack Log-linear models for capture-recapture , 1989 .

[10]  H. Prosper Bayesian Analysis , 2000, hep-ph/0006356.

[11]  Jerome A Dupuis,et al.  A Bayesian Approach to the Multistate Jolly–Seber Capture–Recapture Model , 2007, Biometrics.

[12]  R King,et al.  Factors Influencing Soay Sheep Survival: A Bayesian Analysis , 2006, Biometrics.

[13]  J. Dupuis Bayesian estimation of movement and survival probabilities from capture-recapture data , 1995 .

[14]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[15]  Andrew Thomas,et al.  The BUGS project: Evolution, critique and future directions , 2009, Statistics in medicine.

[16]  C Brownie,et al.  A likelihood-based approach to capture-recapture estimation of demographic parameters under the robust design. , 1995, Biometrics.

[17]  K. Pollock A Capture-Recapture Design Robust to Unequal Probability of Capture , 1982 .

[18]  Richard J. Barker,et al.  Towards the mother–of–all–models: customised construction of the mark–recapture likelihood function , 2004 .

[19]  G. Seber The estimation of animal abundance and related parameters , 1974 .

[20]  P. H. Leslie,et al.  THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD: III. AN EXAMPLE OF THE PRACTICAL APPLICATIONS OF THE METHOD , 1953 .

[21]  Kenneth H. Pollock,et al.  CAPTURE-RECAPTURE STUDIES FOR MULTIPLE STRATA INCLUDING NON-MARKOVIAN TRANSITIONS , 1993 .

[22]  C J Schwarz,et al.  An Extension of the Cormack–Jolly–Seber Model for Continuous Covariates with Application to Microtus pennsylvanicus , 2006, Biometrics.

[23]  R A Fisher,et al.  The spread of a gene in natural conditions in a colony of the moth Panaxia dominula L. , 1947, Heredity.

[24]  G. Seber A Review of Estimating Animal Abundance II , 1992 .

[25]  Lalitha Sanathanan,et al.  ESTIMATING THE SIZE OF A MULTINOMIAL POPULATION , 1972 .

[26]  G. Seber A NOTE ON THE MULTIPLE-RECAPTURE CENSUS. , 1965, Biometrika.

[27]  Richard J. Barker,et al.  JOINT MODELING OF LIVE-RECAPTURE, TAG-RESIGHT, AND TAG-RECOVERY DATA , 1997 .

[28]  B. Manly,et al.  Parsimonious modelling of capture―mark―recapture studies , 1985 .

[29]  G. Seber,et al.  Estimating time-specific survival and reporting rates for adult birds from band returns , 1970 .

[30]  William A Link,et al.  Modeling Association among Demographic Parameters in Analysis of Open Population Capture–Recapture Data , 2005, Biometrics.

[31]  '. R.Pradel Utilization of Capture-Mark-Recapture for the Study of Recruitment and Population Growth Rate , 2001 .

[32]  Richard J. Barker,et al.  A Further Step Toward the Mother-of-All-Models: Flexibility and Functionality in the Modeling of Capture–Recapture Data , 2009 .

[33]  G. Seber The multi-sample single recapture census , 1962 .

[34]  David A. van Dyk,et al.  A Corrected and More Efficient Suite of MCMC Samplers for the Multinomal Probit Model , 2015, 1504.07823.

[35]  Kenneth H. Pollock,et al.  A K-sample tag-recapture model allowing for unequal survival and catchability , 1975 .

[36]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  C. Jackson,et al.  The Analysis of an Animal Population. , 1939 .

[38]  G. Jolly EXPLICIT ESTIMATES FROM CAPTURE-RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION-STOCHASTIC MODEL. , 1965, Biometrika.

[39]  S. Crosbie The mathematical modelling of capture-mark-recapture experiments on animal populations , 1980, Bulletin of the Australian Mathematical Society.

[40]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[41]  Richard J. Barker,et al.  A unified capture-recapture framework , 2008 .

[42]  G. Jolly Estimates of population parameters from multiple recapture data with both death and dilution—deterministic model , 1963 .

[43]  Roland Langrock,et al.  MAXIMUM LIKELIHOOD ESTIMATION OF MARK-RECAPTURE-RECOVERY MODELS IN THE PRESENCE OF CONTINUOUS COVARIATES , 2012, 1211.0882.

[44]  R. Wolpert,et al.  Integrated likelihood methods for eliminating nuisance parameters , 1999 .

[45]  J Andrew Royle,et al.  Web-based Supplementary Materials for “ Modeling Individual Effects in the Cormack-Jolly-Seber Model : A State-space Formulation ” , 2010 .

[46]  M. Conroy,et al.  Analysis and Management of Animal Populations , 2002 .

[47]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[48]  D. V. Dyk,et al.  A Bayesian analysis of the multinomial probit model using marginal data augmentation , 2005 .

[49]  Darryl I. MacKenzie,et al.  Flexible hierarchical mark-recapture modeling for open populations using WinBUGS , 2009, Environmental and Ecological Statistics.

[50]  J. Darroch THE MULTIPLE-RECAPTURE CENSUS II. ESTIMATION WHEN THERE IS IMMIGRATION OR DEATH , 1959 .

[51]  William A. Link,et al.  Bayesian Inference: With Ecological Applications , 2009 .

[52]  R. Cormack Interval estimation for mark-recapture studies of closed populations. , 1992, Biometrics.

[53]  Olivier Gimenez,et al.  State-space modelling of data on marked individuals , 2007 .

[54]  K. Burnham,et al.  Program MARK: survival estimation from populations of marked animals , 1999 .

[55]  R. Fisher Two New Properties of Mathematical Likelihood , 1934 .

[56]  D. J. Finney,et al.  Life of a Scientist , 1979, Asia-Pacific Biotech News.

[57]  Richard J Barker,et al.  Closed‐population capture–recapture modeling of samples drawn one at a time , 2014, Biometrics.

[58]  R. L. Sandland,et al.  Statistical inference for Poisson and multinomial models for capture-recapture experiments , 1984 .

[59]  Carl J. Schwarz,et al.  Estimating migration rates using tag-recovery data , 1993 .

[60]  J. Darroch THE MULTIPLE-RECAPTURE CENSUS I. ESTIMATION OF A CLOSED POPULATION , 1958 .