Chaos and Deterministic Versus Stochastic Non‐Linear Modelling

An exploratory technique is introduced for investigating how much of the irregularity in an aperiodic time series is due to low-dimensional chaotic dynamics, as opposed to stochastic or high-dimensional dynamics. Nonlinear models are constructed with a variable smoothing parameter which at one extreme defines a nonlinear deterministic model, and at. the other extreme defines a linear stochastic model. The accuracy of the resulting short-term forecasts as a function of the smoothing parameter reveals much about the underlying dynamics generating the time series. The technique is applied to a variety of experimental and naturally occurring time series data, and the results are compared to dimension calculations.

[1]  F. Takens,et al.  On the nature of turbulence , 1971 .

[2]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[3]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[4]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[5]  Howell Tong,et al.  Threshold autoregression, limit cycles and cyclical data- with discussion , 1980 .

[6]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[7]  Daniel Dewey,et al.  Self-replicating attractor of a driven semiconductor oscillator , 1983 .

[8]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[9]  A. Politi,et al.  Statistical description of chaotic attractors: The dimension function , 1985 .

[10]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[11]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[12]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[13]  Gottfried Mayer-Kress,et al.  Dimensions and Entropies in Chaotic Systems , 1986 .

[14]  P. Grassberger Do climatic attractors exist? , 1986, Nature.

[15]  A. Babloyantz,et al.  Low-dimensional chaos in an instance of epilepsy. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[17]  J. Keeler,et al.  Robust space-time intermittency and 1/ f noise , 1986 .

[18]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[19]  Theiler,et al.  Spurious dimension from correlation algorithms applied to limited time-series data. , 1986, Physical review. A, General physics.

[20]  Robert M. Farber,et al.  How Neural Nets Work , 1987, NIPS.

[21]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[22]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[23]  D. Ruelle,et al.  Recurrence Plots of Dynamical Systems , 1987 .

[24]  GOTTFRIED MAYER‐KRESS AND,et al.  Dimensionality of the Human Electroencephalogram , 1987, Annals of the New York Academy of Sciences.

[25]  Gottfried Mayer-Kress,et al.  APPLICATION OF DIMENSION ALGORITHMS TO EXPERIMENTAL CHAOS , 1987 .

[26]  James P. Crutchfield,et al.  Equations of Motion from a Data Series , 1987, Complex Syst..

[27]  R. Ecke,et al.  Mode-locking and chaos in Rayleigh—Benard convection , 1987 .

[28]  James P. Crutchfield,et al.  Phenomenology of Spatio-Temporal Chaos , 1987 .

[29]  Darryl D. Holm,et al.  Low-dimensional behaviour in the complex Ginzburg-Landau equation , 1988 .

[30]  F. Yates,et al.  Dimensional analysis of nonlinear oscillations in brain, heart, and muscle , 1988 .

[31]  J. Doyne Farmer,et al.  Exploiting Chaos to Predict the Future and Reduce Noise , 1989 .

[32]  A. Babloyantz,et al.  Some Remarks on Nonlinear Data Analysis of Physiological Time Series , 1989 .

[33]  A. Fraser Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria , 1989 .

[34]  Gunaratne,et al.  Chaos beyond onset: A comparison of theory and experiment. , 1989, Physical review letters.

[35]  Neal B. Abraham,et al.  Complexity and Chaos , 1989 .

[36]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[37]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[38]  N. F. Jr. Hunter,et al.  Application of nonlinear time series models to driven systems , 1990 .

[39]  David E. Rumelhart,et al.  Predicting the Future: a Connectionist Approach , 1990, Int. J. Neural Syst..

[40]  Breeden,et al.  Reconstructing equations of motion from experimental data with unobserved variables. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[41]  J. D. Farmer,et al.  Nonlinear modeling of chaotic time series: Theory and applications , 1990 .

[42]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[43]  Norman H. Packard,et al.  A Genetic Learning Algorithm for the Analysis of Complex Data , 1990, Complex Syst..

[44]  James Theiler,et al.  Estimating fractal dimension , 1990 .

[45]  D. Ruelle,et al.  The Claude Bernard Lecture, 1989 - Deterministic chaos: the science and the fiction , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[46]  Neal B. Abraham,et al.  Measures of Complexity and Chaos , 1990 .

[47]  J. Theiler Some Comments on the Correlation Dimension of 1/fαNoise , 1991 .

[48]  David Hsieh Chaos and Nonlinear Dynamics: Application to Financial Markets , 1991 .

[49]  P. Grassberger,et al.  NONLINEAR TIME SEQUENCE ANALYSIS , 1991 .

[50]  D. Rumelhart,et al.  Predicting sunspots and exchange rates with connectionist networks , 1991 .

[51]  James Theiler,et al.  Using surrogate data to detect nonlinearity in time series , 1991 .

[52]  J. D. Farmer,et al.  State space reconstruction in the presence of noise" Physica D , 1991 .

[53]  D. Broomhead,et al.  Local adaptive Galerkin bases for large-dimensional dynamical systems , 1991 .

[54]  Martin Casdagli,et al.  Nonlinear Forecasting, Chaos and Statistics , 1992 .

[55]  Clive W. J. Granger,et al.  Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests , 1993 .