A Global Convergence Theory for Dennis, El-Alem, and Maciel's Class of Trust-Region Algorithms for Constrained Optimization without Assuming Regularity

This work presents a convergence theory for Dennis, El-Alem, and Maciel's class of trust-region-based algorithms for solving the smooth nonlinear programming problem with equality constraints. The results are proved under very mild conditions on the quasi-normal and tangential components of the trial steps. The Lagrange multiplier estimates and the Hessian estimates are assumed to be bounded. No regularity assumption is made. In particular, linear independence of the gradients of the constraints is not assumed. The theory proves global convergence for the class. In particular, it shows that a subsequence of the iteration sequence satisfies one of four types of Mayer--Bliss stationary conditions in the limit.

[1]  M. Powell CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS , 1975 .

[2]  M. Powell A New Algorithm for Unconstrained Optimization , 1970 .

[3]  Yin Zhang,et al.  Computing a Celis-Dennis-Tapia trust-region step for equality constrained optimization , 1992, Math. Program..

[4]  R. A. Tapia,et al.  Numerical experience with a polyhedral-norm CDT trust-region algorithm , 1995 .

[5]  T. Plantenga Large-scale nonlinear constrained optimization using trust regions , 1994 .

[6]  J. Burke An exact penalization viewpoint of constrained optimization , 1991 .

[7]  A. V. Levy,et al.  Use of the augmented penalty function in mathematical programming problems, part 2 , 1971 .

[8]  John E. Dennis,et al.  A Global Convergence Theory for General Trust-Region-Based Algorithms for Equality Constrained Optimization , 1997, SIAM J. Optim..

[9]  G. Bliss Normality and Abnormality in the Calculus of Variations , 1938 .

[10]  Jorge Nocedal,et al.  On the Implementation of an Algorithm for Large-Scale Equality Constrained Optimization , 1998, SIAM J. Optim..

[11]  John E. Dennis,et al.  On the Convergence Theory of Trust-Region-Based Algorithms for Equality-Constrained Optimization , 1997, SIAM J. Optim..

[12]  Jorge J. Moré,et al.  Recent Developments in Algorithms and Software for Trust Region Methods , 1982, ISMP.

[13]  A. V. Levy,et al.  Use of the augmented penalty function in mathematical programming problems, part 1 , 1971 .

[14]  A. Mayer Begründung der Lagrange'schen Multiplicatorenmethode in der Variationsrechnung , 1886 .

[15]  J. Burke A sequential quadratic programming method for potentially infeasible mathematical programs , 1989 .

[16]  D. Shanno Projected Quasi-Newton Algorithm with Trust Region for Constrained Optimization ~ , .

[17]  M. El Hallabi A Global Convergence Theory for Arbitrary Norm Trust-Region Algorithms for Equality Constrained Optimization , 1993 .

[18]  M. R. Celis A TRUST REGION STRATEGY FOR NONLINEAR EQUALITY CONSTRAINED OPTIMIZATION (NONLINEAR PROGRAMMING, SEQUENTIAL QUADRATIC) , 1985 .

[19]  P. Gill,et al.  Some theoretical properties of an augmented lagrangian merit function , 1986 .

[20]  Mahmoud El-Alem,et al.  A Robust Trust-Region Algorithm with a Nonmonotonic Penalty Parameter Scheme for Constrained Optimization , 1995, SIAM J. Optim..

[21]  Richard H. Byrd,et al.  A Family of Trust Region Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties. , 1985 .

[22]  James V. Burke,et al.  A Robust Trust Region Method for Constrained Nonlinear Programming Problems , 1992, SIAM J. Optim..

[23]  A. Vardi A Trust Region Algorithm for Equality Constrained Minimization: Convergence Properties and Implementation , 1985 .

[24]  M. El-Alem Convergence to a second-order point of a trust-region algorithm with a nonmonotonic penalty parameter for constrained optimization , 1996 .

[25]  M. El-Alem A global convergence theory for the Celis-Dennis-Tapia trust-region algorithm for constrained optimization , 1991 .

[26]  Ya-Xiang Yuan,et al.  On a subproblem of trust region algorithms for constrained optimization , 1990, Math. Program..

[27]  Jorge Nocedal,et al.  A Reduced Hessian Method for Large-Scale Constrained Optimization , 1995, SIAM J. Optim..

[28]  R. Fletcher Practical Methods of Optimization , 1988 .

[29]  R. Tapia,et al.  A Global Convergence Theory for Arbitrary Norm Trust-Region Methods for Nonlinear Equations , 1995 .

[30]  Ya-Xiang Yuan,et al.  A trust region algorithm for equality constrained optimization , 1990, Math. Program..

[31]  Ya-Xiang Yuan,et al.  On the convergence of a new trust region algorithm , 1995 .

[32]  J. Dennis,et al.  A global convergence theory for a class of trust region algorithms for constrained optimization , 1988 .

[33]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[34]  John E. Dennis,et al.  A global convergence theory for a general class of trust region algorithms for equality constrained optimization , 1993 .

[35]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[36]  J. Dennis,et al.  Multilevel algorithms for nonlinear optimization , 1995 .

[37]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[38]  J. C. Heideman,et al.  Sequential gradient-restoration algorithm for the minimization of constrained functions—Ordinary and conjugate gradient versions , 1969 .

[39]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .

[40]  A. V. Levy,et al.  Modifications and extensions of the conjugate gradient-restoration algorithm for mathematical programming problems , 1971 .

[41]  Leon S. Lasdon,et al.  An Improved Successive Linear Programming Algorithm , 1985 .

[42]  J. Dennis,et al.  A robust trust region algorithm for nonlinear programming , 1990 .

[43]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[44]  L. N. Vicente,et al.  Trust-Region Interior-Point SQP Algorithms for a Class of Nonlinear Programming Problems , 1998 .

[45]  Richard H. Byrd,et al.  A Trust Region Algorithm for Nonlinearly Constrained Optimization , 1987 .

[46]  E. J.,et al.  MULTILEVEL ALGORITHMS FOR NONLINEAR OPTIMIZATION , 2022 .

[47]  R. Carter Multi-Model Algorithms for Optimization , 1986 .

[48]  N. Alexandrov Multilevel algorithms for nonlinear equations and equality constrained optimization , 1993 .