A Global Convergence Theory for Dennis, El-Alem, and Maciel's Class of Trust-Region Algorithms for Constrained Optimization without Assuming Regularity
暂无分享,去创建一个
[1] M. Powell. CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS , 1975 .
[2] M. Powell. A New Algorithm for Unconstrained Optimization , 1970 .
[3] Yin Zhang,et al. Computing a Celis-Dennis-Tapia trust-region step for equality constrained optimization , 1992, Math. Program..
[4] R. A. Tapia,et al. Numerical experience with a polyhedral-norm CDT trust-region algorithm , 1995 .
[5] T. Plantenga. Large-scale nonlinear constrained optimization using trust regions , 1994 .
[6] J. Burke. An exact penalization viewpoint of constrained optimization , 1991 .
[7] A. V. Levy,et al. Use of the augmented penalty function in mathematical programming problems, part 2 , 1971 .
[8] John E. Dennis,et al. A Global Convergence Theory for General Trust-Region-Based Algorithms for Equality Constrained Optimization , 1997, SIAM J. Optim..
[9] G. Bliss. Normality and Abnormality in the Calculus of Variations , 1938 .
[10] Jorge Nocedal,et al. On the Implementation of an Algorithm for Large-Scale Equality Constrained Optimization , 1998, SIAM J. Optim..
[11] John E. Dennis,et al. On the Convergence Theory of Trust-Region-Based Algorithms for Equality-Constrained Optimization , 1997, SIAM J. Optim..
[12] Jorge J. Moré,et al. Recent Developments in Algorithms and Software for Trust Region Methods , 1982, ISMP.
[13] A. V. Levy,et al. Use of the augmented penalty function in mathematical programming problems, part 1 , 1971 .
[14] A. Mayer. Begründung der Lagrange'schen Multiplicatorenmethode in der Variationsrechnung , 1886 .
[15] J. Burke. A sequential quadratic programming method for potentially infeasible mathematical programs , 1989 .
[16] D. Shanno. Projected Quasi-Newton Algorithm with Trust Region for Constrained Optimization ~ , .
[17] M. El Hallabi. A Global Convergence Theory for Arbitrary Norm Trust-Region Algorithms for Equality Constrained Optimization , 1993 .
[18] M. R. Celis. A TRUST REGION STRATEGY FOR NONLINEAR EQUALITY CONSTRAINED OPTIMIZATION (NONLINEAR PROGRAMMING, SEQUENTIAL QUADRATIC) , 1985 .
[19] P. Gill,et al. Some theoretical properties of an augmented lagrangian merit function , 1986 .
[20] Mahmoud El-Alem,et al. A Robust Trust-Region Algorithm with a Nonmonotonic Penalty Parameter Scheme for Constrained Optimization , 1995, SIAM J. Optim..
[21] Richard H. Byrd,et al. A Family of Trust Region Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties. , 1985 .
[22] James V. Burke,et al. A Robust Trust Region Method for Constrained Nonlinear Programming Problems , 1992, SIAM J. Optim..
[23] A. Vardi. A Trust Region Algorithm for Equality Constrained Minimization: Convergence Properties and Implementation , 1985 .
[24] M. El-Alem. Convergence to a second-order point of a trust-region algorithm with a nonmonotonic penalty parameter for constrained optimization , 1996 .
[25] M. El-Alem. A global convergence theory for the Celis-Dennis-Tapia trust-region algorithm for constrained optimization , 1991 .
[26] Ya-Xiang Yuan,et al. On a subproblem of trust region algorithms for constrained optimization , 1990, Math. Program..
[27] Jorge Nocedal,et al. A Reduced Hessian Method for Large-Scale Constrained Optimization , 1995, SIAM J. Optim..
[28] R. Fletcher. Practical Methods of Optimization , 1988 .
[29] R. Tapia,et al. A Global Convergence Theory for Arbitrary Norm Trust-Region Methods for Nonlinear Equations , 1995 .
[30] Ya-Xiang Yuan,et al. A trust region algorithm for equality constrained optimization , 1990, Math. Program..
[31] Ya-Xiang Yuan,et al. On the convergence of a new trust region algorithm , 1995 .
[32] J. Dennis,et al. A global convergence theory for a class of trust region algorithms for constrained optimization , 1988 .
[33] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[34] John E. Dennis,et al. A global convergence theory for a general class of trust region algorithms for equality constrained optimization , 1993 .
[35] Kenneth Levenberg. A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .
[36] J. Dennis,et al. Multilevel algorithms for nonlinear optimization , 1995 .
[37] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[38] J. C. Heideman,et al. Sequential gradient-restoration algorithm for the minimization of constrained functions—Ordinary and conjugate gradient versions , 1969 .
[39] J. J. Moré,et al. Levenberg--Marquardt algorithm: implementation and theory , 1977 .
[40] A. V. Levy,et al. Modifications and extensions of the conjugate gradient-restoration algorithm for mathematical programming problems , 1971 .
[41] Leon S. Lasdon,et al. An Improved Successive Linear Programming Algorithm , 1985 .
[42] J. Dennis,et al. A robust trust region algorithm for nonlinear programming , 1990 .
[43] Olvi L. Mangasarian,et al. Nonlinear Programming , 1969 .
[44] L. N. Vicente,et al. Trust-Region Interior-Point SQP Algorithms for a Class of Nonlinear Programming Problems , 1998 .
[45] Richard H. Byrd,et al. A Trust Region Algorithm for Nonlinearly Constrained Optimization , 1987 .
[46] E. J.,et al. MULTILEVEL ALGORITHMS FOR NONLINEAR OPTIMIZATION , 2022 .
[47] R. Carter. Multi-Model Algorithms for Optimization , 1986 .
[48] N. Alexandrov. Multilevel algorithms for nonlinear equations and equality constrained optimization , 1993 .