An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data

Abstract The Mars gravity field resolution is mostly determined by the lower altitude Mars Reconnaissance Orbiter (MRO) tracking data. With nearly four years of additional MRO and Mars Odyssey tracking data since the last JPL released gravity field MRO110C and lander tracking from the MER Opportunity Rover, the gravity field and orientation of Mars have been improved. The new field, MRO120D, extends the maximum spherical harmonic degree slightly to 120, improves the determination of the higher degree coefficients as demonstrated by improved correlation with topography and reduces the uncertainty in the corresponding Mars orientation parameters by up to a factor of two versus previously combined gravity and orientation solutions. The new precession solution is ψ ˙ = − 7608.3 ± 2.1 mas / yr and is consistent with previous results but with a reduced uncertainty by 40%. The Love number solution, k2 = 0.169 ± 0.006, also shows a similar result to previous studies.

[1]  D. Tholen,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009 , 2011 .

[2]  David E. Smith,et al.  The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission , 2013 .

[3]  A. Konopliv,et al.  Venus Gravity: 180th Degree and Order Model , 1999 .

[4]  Alexander S. Konopliv,et al.  The JPL Mars gravity field, Mars50c, based upon Viking and Mariner 9 Doppler tracking data , 1995 .

[5]  W. M. Kaula Theory of satellite geodesy , 1966 .

[6]  W. Folkner,et al.  Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. , 1997, Science.

[7]  G. Balmino,et al.  The gravity field of Mars: results from Mars Global Surveyor. , 1999, Science.

[8]  G. Balmino,et al.  Martian gravity field model and its time variations from MGS and Odyssey data , 2009 .

[9]  M. Zuber,et al.  Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters , 2011 .

[10]  Sami W. Asmar,et al.  Mars reconnaissance orbiter radio science gravity investigation , 2007 .

[11]  Frank G. Lemoine,et al.  An improved solution of the gravity field of Mars (GMM‐2B) from Mars Global Surveyor , 2001 .

[12]  Dah-Ning Yuan,et al.  Gravity field of Mars: A 75th Degree and Order Model , 2001 .

[13]  V. Lainey,et al.  Martian satellite orbits and ephemerides , 2014 .

[14]  John W. Armstrong,et al.  Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind , 1979 .

[15]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[16]  Dah-Ning Yuan,et al.  A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris , 2006 .

[17]  W. Folkner,et al.  Fluid Core Size of Mars from Detection of the Solar Tide , 2003, Science.

[18]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[19]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[20]  Véronique Dehant,et al.  Phobos: Observed bulk properties , 2014 .

[21]  Véronique Dehant,et al.  New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover , 2014 .