Protein Evolution by Molecular Tinkering: Diversification of the Nuclear Receptor Superfamily from a Ligand-Dependent Ancestor

Phylogenetic reconstruction of the structure and function of the ancestor of the nuclear receptor protein family reveals how functional diversity evolves by subtle tinkering with an ancestral template.

[1]  James C. Wilgenbusch,et al.  AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics , 2008, Bioinform..

[2]  V. Hinman,et al.  Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity , 2006, Evolution & development.

[3]  A. Tarrant,et al.  Nuclear receptor complement of the cnidarian Nematostella vectensis: phylogenetic relationships and developmental expression patterns , 2009, BMC Evolutionary Biology.

[4]  E. Aggelidou,et al.  Critical Role of Residues Defining the Ligand Binding Pocket in Hepatocyte Nuclear Factor-4α* , 2004, Journal of Biological Chemistry.

[5]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[6]  Guoqiang Sun,et al.  Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation , 2007, Proceedings of the National Academy of Sciences.

[7]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[8]  L. Moore,et al.  A structural basis for constitutive activity in the human CAR/RXRalpha heterodimer. , 2004, Molecular cell.

[9]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[10]  D. Moras,et al.  Structural studies on nuclear receptors , 2000, Cellular and Molecular Life Sciences CMLS.

[11]  P. Gowaty Developmental Plasticity and Evolution Mary Jane West-Eberhard , 2005, Animal Behaviour.

[12]  R. DeSalle,et al.  A new method to localize and test the significance of incongruence: detecting domain shuffling in the nuclear receptor superfamily. , 2000, Systematic biology.

[13]  W. Müller,et al.  Retinoid X receptor and retinoic acid response in the marine sponge Suberites domuncula , 2003, Journal of Experimental Biology.

[14]  H. Krause,et al.  The Structural Basis of Gas-Responsive Transcription by the Human Nuclear Hormone Receptor REV-ERBβ , 2009, PLoS biology.

[15]  P. Sigler,et al.  Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. , 2000, Science.

[16]  Xiaohong Liu,et al.  Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors , 2003, Nature.

[17]  S. Carroll,et al.  Deep homology and the origins of evolutionary novelty , 2009, Nature.

[18]  T. Willson,et al.  Structural Analyses Reveal Phosphatidyl Inositols as Ligands for the NR5 Orphan Receptors SF-1 and LRH-1 , 2005, Cell.

[19]  Ralf Flaig,et al.  Structural Basis for the Deactivation of the Estrogen-related Receptor γ by Diethylstilbestrol or 4-Hydroxytamoxifen and Determinants of Selectivity* , 2004, Journal of Biological Chemistry.

[20]  Nicholas H. Putnam,et al.  The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans , 2008, Nature.

[21]  J. W. Thornton,et al.  Evolution of a New Function by Degenerative Mutation in Cephalochordate Steroid Receptors , 2008, PLoS genetics.

[22]  V. Laudet,et al.  Ligand binding and nuclear receptor evolution , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  Timothy J. Harlow,et al.  Searching for convergence in phylogenetic Markov chain Monte Carlo. , 2006, Systematic biology.

[24]  Nicholas H. Putnam,et al.  The Trichoplax genome and the nature of placozoans , 2008, Nature.

[25]  O. Gascuel,et al.  Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. , 2006, Systematic biology.

[26]  P. Walther,et al.  Glucocorticoids manifest androgenic activity in a cell line derived from a metastatic prostate cancer. , 2001, Cancer research.

[27]  Vincent Laudet,et al.  Principles for modulation of the nuclear receptor superfamily , 2004, Nature Reviews Drug Discovery.

[28]  G J Kleywegt,et al.  Detection, delineation, measurement and display of cavities in macromolecular structures. , 1994, Acta crystallographica. Section D, Biological crystallography.

[29]  M. Campbell,et al.  PANTHER: a library of protein families and subfamilies indexed by function. , 2003, Genome research.

[30]  F. Jacob,et al.  Evolution and tinkering. , 1977, Science.

[31]  D. Hillis,et al.  Taxonomic sampling, phylogenetic accuracy, and investigator bias. , 1998, Systematic biology.

[32]  V. Laudet,et al.  Evolutionary genomics of nuclear receptors: from twenty-five ancestral genes to derived endocrine systems. , 2004, Molecular biology and evolution.

[33]  Eugene Bolotin,et al.  Identification of an Endogenous Ligand Bound to a Native Orphan Nuclear Receptor , 2009, PloS one.

[34]  J Schultz,et al.  SMART, a simple modular architecture research tool: identification of signaling domains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  E. Ortlund,et al.  Crystal Structure of an Ancient Protein: Evolution by Conformational Epistasis , 2007, Science.

[36]  T. Perlmann,et al.  Digging deep into the pockets of orphan nuclear receptors: insights from structural studies. , 2004, Trends in cell biology.

[37]  Sean R. Eddy,et al.  A simple algorithm to infer gene duplication and speciation events on a gene tree , 2001, Bioinform..

[38]  S. Kliewer,et al.  The nuclear xenobiotic receptor CAR: structural determinants of constitutive activation and heterodimerization. , 2004, Molecular cell.

[39]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[40]  T. Willson,et al.  The Drosophila Orphan Nuclear Receptor DHR38 Mediates an Atypical Ecdysteroid Signaling Pathway , 2003, Cell.

[41]  E. Fernandez,et al.  Structure of the murine constitutive androstane receptor complexed to androstenol: a molecular basis for inverse agonism. , 2004, Molecular cell.

[42]  C. Hänni,et al.  Ligand binding was acquired during evolution of nuclear receptors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Timothy M Willson,et al.  Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds fatty acids. , 2002, Structure.

[44]  Todd H. Oakley,et al.  The Amphimedon queenslandica genome and the evolution of animal complexity , 2010, Nature.

[45]  Shiuan Chen,et al.  Molecular Basis for the Constitutive Activity of Estrogen-related Receptor α-1* , 2001, The Journal of Biological Chemistry.

[46]  Fabrice Armougom,et al.  The iRMSD: a local measure of sequence alignment accuracy using structural information , 2006, ISMB.

[47]  L. Moore,et al.  Identification of a Novel Human Constitutive Androstane Receptor (CAR) Agonist and Its Use in the Identification of CAR Target Genes* , 2003, The Journal of Biological Chemistry.

[48]  R J Fletterick,et al.  Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. , 1998, Science.

[49]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[50]  L. Moore,et al.  A Structural Basis for Constitutive Activity in the Human CAR/RXRα Heterodimer , 2004 .