Minimum Density Hyperplanes
暂无分享,去创建一个
[1] Pasi Fränti,et al. Iterative shrinking method for clustering problems , 2006, Pattern Recognit..
[2] Shai Ben-David,et al. Learning Low Density Separators , 2008, AISTATS.
[3] Benjamin Pfaff,et al. Perturbation Analysis Of Optimization Problems , 2016 .
[4] Daniel Boley,et al. Principal Direction Divisive Partitioning , 1998, Data Mining and Knowledge Discovery.
[5] E. Polak. On the mathematical foundations of nondifferentiable optimization in engineering design , 1987 .
[6] Bernard W. Silverman,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[7] Pietro Perona,et al. Self-Tuning Spectral Clustering , 2004, NIPS.
[8] Ivor W. Tsang,et al. Tighter and Convex Maximum Margin Clustering , 2009, AISTATS.
[9] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[10] Nicola Torelli,et al. Clustering via nonparametric density estimation , 2007, Stat. Comput..
[11] A. Cuevas,et al. Estimating the number of clusters , 2000 .
[12] Adrian S. Lewis,et al. Approximating Subdifferentials by Random Sampling of Gradients , 2002, Math. Oper. Res..
[13] Daphne Koller,et al. Restricted Bayes Optimal Classifiers , 2000, AAAI/IAAI.
[14] W. Stuetzle,et al. A Generalized Single Linkage Method for Estimating the Cluster Tree of a Density , 2010 .
[15] A. Cuevas,et al. Cluster analysis: a further approach based on density estimation , 2001 .
[16] Vittorio Castelli,et al. On the exponential value of labeled samples , 1995, Pattern Recognit. Lett..
[17] John A. Hartigan,et al. Clustering Algorithms , 1975 .
[18] Shengrui Wang,et al. On Comparison of Clustering Techniques for Histogram PDF Estimation 1 , 2000 .
[19] Larry S. Davis,et al. Automatic online tuning for fast Gaussian summation , 2008, NIPS.
[20] Ivor W. Tsang,et al. Maximum Margin Clustering Made Practical , 2007, IEEE Transactions on Neural Networks.
[21] Julia Hirschberg,et al. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure , 2007, EMNLP.
[22] A. Cuevas,et al. A plug-in approach to support estimation , 1997 .
[23] Joachim M. Buhmann,et al. Correlated random features for fast semi-supervised learning , 2013, NIPS.
[24] Ayhan Demiriz,et al. Semi-Supervised Support Vector Machines , 1998, NIPS.
[25] S. Sathiya Keerthi,et al. Optimization Techniques for Semi-Supervised Support Vector Machines , 2008, J. Mach. Learn. Res..
[26] Dale Schuurmans,et al. Maximum Margin Clustering , 2004, NIPS.
[27] J. Carmichael,et al. FINDING NATURAL CLUSTERS , 1968 .
[28] Mikhail Belkin,et al. Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..
[29] B. Silverman,et al. Using Kernel Density Estimates to Investigate Multimodality , 1981 .
[30] Giovanna Menardi,et al. An advancement in clustering via nonparametric density estimation , 2014, Stat. Comput..
[31] Robert D. Nowak,et al. Unlabeled data: Now it helps, now it doesn't , 2008, NIPS.
[32] Jason Weston,et al. Large Scale Transductive SVMs , 2006, J. Mach. Learn. Res..
[33] Rong Jin,et al. A Simple Algorithm for Semi-supervised Learning with Improved Generalization Error Bound , 2012, ICML.
[34] Thorsten Joachims,et al. Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.
[35] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[36] P. Rigollet,et al. Optimal rates for plug-in estimators of density level sets , 2006, math/0611473.
[37] Bernhard Schölkopf,et al. Semi-Supervised Learning (Adaptive Computation and Machine Learning) , 2006 .
[38] Jitendra Malik,et al. Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[39] Fei Wang,et al. Efficient multiclass maximum margin clustering , 2008, ICML '08.
[40] Yu. S. Ledyaev,et al. Nonsmooth analysis and control theory , 1998 .
[41] Michael I. Jordan,et al. On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.
[42] Adrian S. Lewis,et al. Nonsmooth optimization via quasi-Newton methods , 2012, Mathematical Programming.
[43] George Karypis,et al. Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering , 2004, Machine Learning.
[44] A. Rinaldo,et al. Generalized density clustering , 2009, 0907.3454.
[45] Dimitris K. Tasoulis,et al. Enhancing principal direction divisive clustering , 2010, Pattern Recognit..
[46] Adrian S. Lewis,et al. A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..
[47] Frank E. Curtis,et al. An adaptive gradient sampling algorithm for non-smooth optimization , 2013, Optim. Methods Softw..
[48] Philippe Rigollet,et al. Generalization Error Bounds in Semi-supervised Classification Under the Cluster Assumption , 2006, J. Mach. Learn. Res..
[49] P. Wolfe. On the convergence of gradient methods under constraint , 1972 .
[50] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[51] J. Hartigan,et al. The Dip Test of Unimodality , 1985 .
[52] Vittorio Castelli,et al. The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter , 1996, IEEE Trans. Inf. Theory.
[53] Alexander Zien,et al. A continuation method for semi-supervised SVMs , 2006, ICML.
[54] Alexander Zien,et al. Semi-Supervised Classification by Low Density Separation , 2005, AISTATS.