The Buneman index via polyhedral split decomposition
暂无分享,去创建一个
[1] A. Dress,et al. A canonical decomposition theory for metrics on a finite set , 1992 .
[2] G. Ziegler. Lectures on Polytopes , 1994 .
[3] J. Isbell. Six theorems about injective metric spaces , 1964 .
[4] J. M. S. S. Pereira,et al. A note on the tree realizability of a distance matrix , 1969 .
[5] Kazuo Murota,et al. Discrete convex analysis , 1998, Math. Program..
[6] P. Buneman. A Note on the Metric Properties of Trees , 1974 .
[7] P. Buneman. The Recovery of Trees from Measures of Dissimilarity , 1971 .
[8] A. Dress. Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .
[9] Michelle L. Wachs. Poset Topology: Tools and Applications , 2006 .
[10] H. Hirai. Characterization of the Distance between Subtrees of a Tree by the Associated Tight Span , 2006 .
[11] Vincent Berry,et al. Faster reliable phylogenetic analysis , 1999, RECOMB.
[12] Vincent Berry,et al. A Structured Family of Clustering and Tree Construction Methods , 2001, Adv. Appl. Math..
[13] Daniel H. Huson,et al. Analyzing and Visualizing Sequence and Distance Data Using SplitsTree , 1996, Discret. Appl. Math..
[14] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[15] Daniel H. Huson,et al. SplitsTree: analyzing and visualizing evolutionary data , 1998, Bioinform..
[16] Katharina T. Huber,et al. Basic Phylogenetic Combinatorics , 2011 .
[17] Hiroshi HIRAI. Geometric Study on the Split Decomposition of Finite Metrics ∗ , 2004 .
[18] Mike A. Steel,et al. Retractions of Finite Distance Functions Onto Tree Metrics , 1999, Discret. Appl. Math..
[19] E. Bolker. A class of convex bodies , 1969 .
[20] Garrett Birkhoff,et al. Abstract Linear Dependence and Lattices , 1935 .
[21] D. Huson,et al. Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.
[22] Michelle L. Wachs,et al. Cohomology of Dowling Lattices and Lie (Super)Algebras , 2000, Adv. Appl. Math..
[23] Vincent Moulton,et al. T-theory: An Overview , 1996, Eur. J. Comb..
[24] Hiroshi Hirai,et al. A Geometric Study of the Split Decomposition , 2006, Discret. Comput. Geom..
[25] R. Stanley. An Introduction to Hyperplane Arrangements , 2007 .
[26] L. Pachter,et al. Algebraic Statistics for Computational Biology: Preface , 2005 .
[27] Thomas A. Dowling,et al. A class of geometric lattices based on finite groups , 1973 .
[28] B. Sturmfels. Oriented Matroids , 1993 .
[29] Vincent Moulton,et al. Trees, tight-spans and point configurations , 2011, Discrete Mathematics.
[30] David E. Speyer,et al. The tropical Grassmannian , 2003, math/0304218.
[31] Andreas W. M. Dress,et al. Towards a Classification of Transitive Group Actions on Finite Metric Spaces , 1989 .
[32] Louis J. Billera,et al. Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..