Assessing biases in computing size spectra of automatically classified zooplankton from imaging systems: A case study with the ZooScan integrated system
暂无分享,去创建一个
Lars Stemmann | Xiaoxia Sun | Carmen García-Comas | Léo Berline | G. Gorsky | L. Stemmann | C. García-Comas | P. Vandromme | L. Berline | G. Gorsky | Pieter Vandromme | Xiaoxia Sun | Gaby Gorsky | Pieter Vandrommea | Lars Stemmanna | Carmen Garcìa-Comasb | Xiaoxia Sund
[1] S. Comeau,et al. Impact of ocean acidification on a key Arctic pelagic mollusc ( Limacina helicina ) , 2009 .
[2] R. W. Sheldon,et al. ON THE OCCURRENCE AND FORMATION OF SMALL PARTICLES IN SEAWATER , 1967 .
[3] Mark E. Baird,et al. A size-resolved pelagic ecosystem model , 2007 .
[4] Thomas M. Powell,et al. Bottom–up and top–down forcing in a simple size-structured plankton dynamics model , 2008 .
[5] Blaise Faugeras,et al. Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: The model , 2007 .
[6] T. Parsons. The Use of Particle Size Spectra in Determining the Structure of a Plankton Community , 1969 .
[7] Astthor Gislason,et al. Comparison between automated analysis of zooplankton using ZooImage and traditional methodology , 2009 .
[8] C. Duarte,et al. Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions , 2001 .
[9] A. Burd,et al. Effect of net avoidance on estimates of diel vertical migration , 2004 .
[10] I. Batista,et al. Unusual early morning development of the equatorial anomaly in the Brazilian sector during the Halloween magnetic storm , 2006 .
[11] J. Stockwell,et al. Calibration of an optical plankton counter for use in fresh water , 1998 .
[12] P. Utgoff,et al. RAPID: Research on Automated Plankton Identification , 2007 .
[13] Meng Zhou. What determines the slope of a plankton biomass spectrum , 2006 .
[14] Ali Abbas,et al. A Clustering Approach for the Separation of Touching Edges in Particle Images , 2008 .
[15] C. Duarte,et al. Some aspects of the analysis of size spectra in aquatic ecology , 1997 .
[16] F. Echevarría,et al. Dealing with size-spectra: some conceptual and mathematical problems , 1994 .
[17] P. Culverhouse,et al. Do experts make mistakes? A comparison of human and machine identification of dinoflagellates , 2003 .
[18] S. Souissi,et al. North Atlantic climate and northwestern Mediterranean plankton variability , 2005 .
[19] D. Marmorek,et al. The use of zooplankton in a biomonitoring program to detect lake acidification and recovery , 1993 .
[20] S. Hernández‐León,et al. Zooplankton biomass estimation from digitized images: a comparison between subtropical and Antarctic organisms , 2009 .
[21] A. D. Poularikas,et al. Automated sizing, counting and identification of zooplankton by pattern recognition , 1984 .
[22] K. Denman,et al. Organisation in the pelagic ecosystem , 1977, Helgoländer wissenschaftliche Meeresuntersuchungen.
[23] J. Gasol,et al. Seasonal variations in size structure and procaryotic dominance in sulfurous Lake Cisó , 1991 .
[24] Karen Manríquez,et al. The influence of coastal upwelling on the mesozooplankton community structure in the coastal zone off Central/Southern Chile as assessed by automated image analysis , 2009 .
[25] D. S. Glazier,et al. Beyond the ‘3/4‐power law’: variation in the intra‐and interspecific scaling of metabolic rate in animals , 2005, Biological reviews of the Cambridge Philosophical Society.
[26] Gabriel Gorsky,et al. The Autonomous Image Analyzer - enumeration, measurement and identification of marine phytoplankton , 1989 .
[27] W. G. Sprules. Nonmetric multidimensional scaling analyses of temporal variation in the structure of limnetic zooplankton communities , 1980, Hydrobiologia.
[28] Pierre Geurts,et al. Supervised learning with decision tree-based methods in computational and systems biology. , 2009, Molecular bioSystems.
[29] K. Banse. Zooplankton: Pivotal role in the control of ocean production I. Biomass and production , 1995 .
[30] D. Boix,et al. Size and species diversity of zooplankton communities in fluctuating Mediterranean salt marshes , 2006 .
[31] D. Boix,et al. Zooplankton structure and dynamics in permanent and temporary Mediterranean salt marshes: taxon-based and size-based approaches , 2005 .
[32] A. King,et al. Using an optical plankton counter to determine the size distributions of preserved zooplankton samples , 1999 .
[33] G. Beaugrand,et al. Spatial dependence of calanoid copepod diversity in the North Atlantic Ocean , 2002 .
[34] A. M. John,et al. THE RELATIONSHIP BETWEEN SIZE OF NET USED AND ESTIMATES OF ZOOPLANKTON DIVERSITY1 , 1966 .
[35] Manfred Rolke,et al. Size structure analysis of zooplankton samples by means of an automated image analyzing system , 1984 .
[36] H. Ducklow,et al. A nitrogen-based model of plankton dynamics in the oceanic mixed layer , 1990 .
[37] E. Eyto,et al. Assessing the status of shallow lakes using an additive model of biomass size spectra , 2007 .
[38] B. Planque,et al. Long-term time series in Calanus finmarchicus abundance - A question of space? , 1997 .
[39] M. Heath. Size spectrum dynamics and the planktonic ecosystem of Loch Linnhe , 1995 .
[40] Philippe Grosjean,et al. Spring zooplankton distribution in the Bay of Biscay from 1998 to 2006 in relation with anchovy recruitment , 2008 .
[41] P. Wiebe,et al. From the Hensen net toward four-dimensional biological oceanography , 2003 .
[42] Marcello Vichi,et al. A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory , 2007 .
[43] Stewart W. Wilson,et al. Noname manuscript No. (will be inserted by the editor) Learning Classifier Systems: A Survey , 2022 .
[44] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[45] Phil F. Culverhouse,et al. Automatic image analysis of plankton: future perspectives , 2006 .
[46] Philippe Grosjean,et al. Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system , 2004 .
[47] T. Platt,et al. Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic [review article] , 2003 .
[48] J. Gattuso,et al. Community metabolism and air-sea C02 fluxes in a coral reef ecosystem (Moorea, French Polynesia) , 1993 .
[49] Marc Picheral,et al. Digital zooplankton image analysis using the ZooScan integrated system , 2010 .
[50] Alex W. Herman,et al. Design and calibration of a new optical plankton counter capable of sizing small zooplankton , 1992 .
[51] M. Alcaraz,et al. Estimating zooplankton biomass through image analysis , 2003 .
[52] Gilles Blanchard,et al. How wrong can we get? A review of machine learning approaches and error bars. , 2009, Combinatorial chemistry & high throughput screening.
[53] Sandra Brucet Balmaña. ZOOPLANKTON STRUCTURE AND DYNAMICS IN MEDITERRANEAN MARSHES (EMPORDÀ WETLANDS): A SIZE-BASED APPROACH , 2003 .
[54] R. W. Sheldon,et al. The Size Distribution of Particles in the OCEAN1 , 1972 .
[55] J. H. Nichols,et al. Mesh selection of copepodite and nauplius stages of four calanoid copepod species , 1991 .
[56] J. Kelly,et al. Evaluation of Optically Acquired Zooplankton Size-Spectrum Data as a Potential Tool for Assessment of Condition in the Great Lakes , 2005, Environmental management.
[57] Drake Circus. A test model for optical plankton counter (OPC) coincidence and a comparison of OPC-derived and conventional measures of plankton abundance , 2000 .
[58] J J Vaquero,et al. Applying watershed algorithms to the segmentation of clustered nuclei. , 1998, Cytometry.
[59] Ricco Rakotomalala. TANAGRA, une plate-forme d'expérimentation pour la fouille de données , 2005, Monde des Util. Anal. Données.
[60] J. G. Field,et al. The size-based dynamics of plankton food webs. I. A simulation model of carbon and nitrogen flows , 1991 .
[61] J. A. Lozano,et al. Optimizing the number of classes in automated zooplankton classification , 2009 .
[62] J. Egozcue,et al. A nonparametric method for the measurement of size diversity with emphasis on data standardization , 2008 .
[63] S. Weisberg,et al. A comparison of plastic and plankton in the north Pacific central gyre. , 2001, Marine pollution bulletin.
[64] Jacquelyn L. Anderson,et al. Effect of towing speed on retention of zooplankton in bongo nets , 2007 .
[65] Magnus L. Johnson,et al. Swimming capacity and pleopod beat rate as a function of sex, size and moult stage in Northern krill Meganyctiphanes norvegica , 2003 .
[66] R. Armstrong. A hybrid spectral representation of phytoplankton growth and zooplankton response: The control rod model of plankton interaction , 2003 .
[67] D. Robins,et al. Is Oithona the most important copepod in the world's oceans? , 2001 .
[68] R. Hopcroft,et al. Assessment of ZooImage as a tool for the classification of zooplankton , 2008 .
[69] M. M. Mullin,et al. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem1 , 1986 .
[70] S. Hernández‐León,et al. Zooplankton biomass estimated from digitalized images in Antarctic waters: A calibration exercise , 2006 .
[71] V. Smetácek. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance , 1985 .
[72] K. Gorbatenko,et al. Comparing the catch efficiency with different types of plankton nets in the high production zones of the Pacific Ocean , 2007 .
[73] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[74] G. Hays,et al. Climate change and marine plankton. , 2005, Trends in ecology & evolution.
[75] P. Laval. Un modéle mathématique de l'évitement d'un filet à plancton, son application pratique, et sa vérification indirecte en recourant au parasitisme de l'amphipode hypéride Vibilia armata Bovallius , 1974 .
[77] A. Fleminger,et al. AVOIDANCE OF TOWED NETS BY ZOOPLANKTON1 , 1965 .