Optimization of radiative recombination in terahertz quantum cascade lasers for high temperature operation

We investigate the temperature performance of terahertz quantum cascade lasers with different radiative recombination strength, using Monte Carlo simulation which includes electron-phonon and electron-electron scattering. The radiative and nonradiative transitions are simultaneously enhanced with the increase of optical transition matrix element. The influences on the optical mode gain are revealed by the evolution of laser levels’ lifetime, population inversion, and parasitic carrier transport paths. The calculation results indicate that the temperature performance can be further improved with an increased radiative transition matrix element around 4.0 nm. The lasing temperature above 200 K is predicted.

[1]  J. Lü,et al.  Temperature performance of resonant-phonon-assisted terahertz quantum-cascade lasers , 2008 .

[2]  David A. Ritchie,et al.  THz and sub‐THz quantum cascade lasers , 2009 .

[3]  Paolo Lugli,et al.  Temperature performance analysis of terahertz quantum cascade lasers: Vertical versus diagonal designs , 2010, 1106.3213.

[4]  C. Jirauschek Monte Carlo study of carrier-light coupling in terahertz quantum cascade lasers , 2011, 1106.2739.

[5]  R. Terazzi,et al.  Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage , 2009 .

[6]  P. Lugli,et al.  MC simulation of double-resonant-phonon depopulation THz QCLs for high operating temperatures , 2008 .

[7]  J. Cao,et al.  Effects of a drift in GaAs growth rate on the electronic transport in resonant phonon terahertz quantum cascade lasers , 2009 .

[8]  Z. R. Wasilewski,et al.  A phonon scattering assisted injection and extraction based terahertz quantum cascade laser , 2012, 1201.4189.

[9]  Qing Hu,et al.  Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers , 2004 .

[10]  Juncheng Cao,et al.  Monte Carlo simulation of carrier dynamics in terahertz quantum cascade lasers , 2010 .

[11]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[12]  Qing Hu,et al.  186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design , 2009 .

[13]  K. M. Chung,et al.  Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling. , 2012, Optics express.

[14]  Andreas Wacker,et al.  Temperature dependence of the gain profile for terahertz quantum cascade lasers , 2007, 0711.2645.

[15]  Paul Harrison,et al.  Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers , 2003 .

[16]  Mauro F. Pereira,et al.  Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers , 2009 .

[17]  J. Reno,et al.  A 1.8-THz quantum cascade laser operating significantly above the temperature of ℏω/kB , 2011 .

[18]  S. Goodnick,et al.  Effect of electron-electron scattering on nonequilibrium transport in quantum-well systems. , 1988, Physical review. B, Condensed matter.

[19]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[20]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[21]  Sushil Kumar,et al.  Recent Progress in Terahertz Quantum Cascade Lasers , 2011 .

[22]  R C Iotti,et al.  Nature of charge transport in quantum-cascade lasers. , 2001, Physical review letters.

[23]  O. Bonno,et al.  Modeling of electron–electron scattering in Monte Carlo simulation of quantum cascade lasers , 2005 .

[24]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[25]  Gerhard Klimeck,et al.  Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements , 2010 .