Determining Modes for Continuous Data Assimilation in 2D Turbulence

We study the number of determining modes necessary for continuous data assimilation in the two-dimensional incompressible Navier–Stokes equations. Our focus is on how the spatial structure of the body forcing affects the rate of continuous data assimilation and the number of determining modes. We treat this problem analytically by proving a convergence result depending on the H−1 norm of f and computationally by considering a family of forcing functions with identical Grashof numbers that are supported on different annuli in Fourier space. The rate of continuous data assimilation and the number of determining modes is shown to depend strongly on the length scales present in the forcing.

[1]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .

[2]  R. Temam Navier-Stokes Equations , 1977 .

[3]  Heinz-Otto Kreiss,et al.  On the smallest scale for the incompressible Navier-Stokes equations , 1989, Theoretical and Computational Fluid Dynamics.

[4]  Dean A. Jones,et al.  On the number of determining nodes for the 2D Navier-Stokes equations , 1992 .

[5]  C. Foias,et al.  Effects of the forcing function spectrum on the energy spectrum in 2‐D turbulence , 1994 .

[6]  J. Charney,et al.  Use of Incomplete Historical Data to Infer the Present State of the Atmosphere , 1969 .

[7]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[8]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[9]  R. Temam,et al.  Asymptotic analysis of the navier-stokes equations , 1983 .

[10]  Bernardo Cockburn,et al.  Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems , 1997, Math. Comput..

[11]  Edriss S. Titi,et al.  On a criterion for locating stable stationary solutions to the Navier-Stokes equations , 1987 .

[12]  M. Marion,et al.  On the construction of families of approximate inertial manifolds , 1992 .

[13]  Edriss S. Titi,et al.  The Navier-Stokes equations on the rotating 2-D sphere: Gevrey regularity and asymptotic degrees of freedom , 1999 .

[14]  James C. Robinson Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .

[15]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[16]  Bernardo Cockburn,et al.  Determining degrees of freedom for nonlinear dissipative equations , 1995 .

[17]  George R. Sell,et al.  Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations , 1989 .

[18]  R. Temam,et al.  The nonlinear galerkin method for the two and three dimensional Navier-Stokes equations , 1990 .

[19]  C. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .

[20]  Lawrence Sirovich,et al.  An investigation of chaotic Kolmogorov flows , 1990 .

[21]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[22]  G. Sell,et al.  On the computation of inertial manifolds , 1988 .

[23]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[24]  Minimum number of modes in approximate solutions to equations of hydrodynamics , 1981 .

[25]  Charles R. Doering,et al.  Rigorous estimates of small scales in turbulent flows , 1996 .

[26]  Carlo Marchioro,et al.  An example of absence of turbulence for any Reynolds number , 1986 .

[27]  Edriss S. Titi,et al.  On the rate of convergence of the nonlinear Galerkin methods , 1993 .

[28]  Michael Holst,et al.  Determining Projections and Functionals for Weak Solutions of the Navier-Stokes Equations , 2010, 1001.1357.

[29]  M. Marion,et al.  A class of numerical algorithms for large time integration: the nonlinear Galerkin methods , 1992 .

[30]  Steven G. Johnson,et al.  The Fastest Fourier Transform in the West , 1997 .

[31]  R. Temam,et al.  Iterated Approximate Inertial Manifolds for Navier-Stokes Equations in 2-D , 1993 .

[32]  R. Temam,et al.  The Connection Between the Navier-Stokes Equations, Dynamical Systems, and Turbulence Theory , 1987 .

[33]  O. Ladyzhenskaya,et al.  A dynamical system generated by the Navier-Stokes equations , 1975 .

[34]  R. Temam,et al.  Determination of the solutions of the Navier-Stokes equations by a set of nodal values , 1984 .

[35]  R. Temam,et al.  On the dimension of the attractors in two-dimensional turbulence , 1988 .

[36]  M. Jolly Bifurcation computations on an approximate inertial manifold for the 2D Navier-Stokes equations , 1993 .

[37]  I. Kevrekidis,et al.  Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations , 1990 .

[38]  R. Temam,et al.  Approximate inertial manifolds and effective viscosity in turbulent flows , 1991 .