The Number and Distributions of Limit Cycles for a Class of Quintic Near-Hamiltonian Systems

This paper is about the number of limit cycles for a quintic near-Hamiltonian system. It is proved that the system can have 20, 22, 24 limit cycles with different distributions of limit cycles for each case. The limit cycles are obtained by using the methods of bifurcation theory and qualitative analysis.

[1]  Tonghua Zhang,et al.  Bifurcations of limit cycles from Quintic Hamiltonian systems with a double figure eight loop , 2004, J. Complex..

[2]  Robert E. Kooij,et al.  Limit cycles in polynomial systems , 1993 .

[3]  Maoan Han,et al.  On the number of limit cycles in double homoclinic bifurcations , 2000 .

[4]  Tonghua Zhang,et al.  Bifurcations of limit cycles from quintic Hamiltonian systems with a double figure eight loop , 2006 .

[5]  Shouchuan Hu,et al.  On the stability of double homoclinic and heteroclinic cycles , 2003 .

[6]  Han Maoan ON THE NUMBER AND DISTRIBUTIONS OF LIMIT CYCLES IN A CUBIC SYSTEM , 2002 .

[7]  Guowei Chen,et al.  The number of limit cycles for a class of quintic Hamiltonian systems under quintic perturbations , 2002, Journal of the Australian Mathematical Society.

[8]  Jan Awrejcewicz,et al.  Bifurcation and Chaos , 1995 .

[9]  Robert Roussarie,et al.  On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields , 1986 .

[10]  Tonghua Zhang,et al.  Bifurcations of limit cycles in a cubic system , 2004 .

[11]  N. G. Lloyd,et al.  New Directions in Dynamical Systems: Limit Cycles of Polynomial Systems – Some Recent Developments , 1988 .

[12]  Tonghua Zhang,et al.  Perturbation from an asymmetric cubic Hamiltonian , 2005 .

[13]  Jibin Li,et al.  Hilbert's 16th Problem and bifurcations of Planar Polynomial Vector Fields , 2003, Int. J. Bifurc. Chaos.

[14]  Jibin Li,et al.  On the Control of Parameters of Distributions of Limit Cycles for a Z2-Equivariant perturbed Planar Hamiltonian Polynomial Vector Field , 2005, Int. J. Bifurc. Chaos.

[15]  Tonghua Zhang,et al.  On the Number and Distribution of Limit Cycles in a cubic System , 2004, Int. J. Bifurc. Chaos.

[16]  S. Smale Mathematical problems for the next century , 1998 .

[17]  Maoan Han,et al.  Cyclicity of planar homoclinic loops and quadratic integrable systems , 1997 .

[18]  Tonghua Zhang,et al.  Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations , 2004 .

[19]  Pei Yu,et al.  Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation , 2005 .