Collaborative swarm intelligence to estimate PV parameters

Abstract To properly evaluate, control and optimize photovoltaic (PV) systems, it is crucial to accurately estimate the equivalent electric circuit parameters from the respective mathematical models that characterize the PV cells or modules behavior. This is currently a hot research topic that has attracted the attention of numerous researchers. In this paper, we propose a new hybrid methodology that combines diversification and intensification mechanisms from different metaheuristics (MHs) to estimate PV parameters precisely. The proposed methodology has the capacity to adapt to the specific optimization problem and maintain diversity when building solutions, thus mitigating premature convergence and population stagnation. This methodology can incorporate several MHs (two or more swarms) with different potentialities, enabling a good balance between diversification and intensification mechanisms. Furthermore, it is able to explore a multidimensional search space in different regions simultaneously. To validate its performance, the proposed methodology was compared with other well-established MHs in several benchmark functions, and used to estimate PV parameters in single and double-diode models in two case studies, the first using standard literature data, and the second using measured data from a real application with and without the occurrence of partial shading. The proposed methodology was able to find highly accurate solutions with reduced computational cost and high reliability. Comparisons with the other MHs demonstrate that the proposed methodology presents a very competitive performance when solving the PV parameter estimation problem.

[1]  N. Rajasekar,et al.  A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation , 2017 .

[2]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[3]  Ibrahim Berkan Aydilek A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems , 2018, Appl. Soft Comput..

[4]  Lijun Wu,et al.  Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm , 2018, Applied Energy.

[5]  Rachida Abounacer,et al.  Parameters identification of photovoltaic solar cells and module using the genetic algorithm with convex combination crossover , 2019 .

[6]  Fernando Fausto,et al.  A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells , 2017 .

[7]  A. Rezaee Jordehi,et al.  Parameter estimation of solar photovoltaic (PV) cells: A review , 2016 .

[8]  Vineet Kumar,et al.  PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm , 2017, Swarm Evol. Comput..

[9]  J. A. Gow,et al.  Development of a photovoltaic array model for use in power-electronics simulation studies , 1999 .

[10]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[11]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[12]  Changseok Bae,et al.  A hybrid gravitational search algorithm with swarm intelligence and deep convolutional feature for object tracking optimization , 2018, Appl. Soft Comput..

[13]  Jing Zhang,et al.  Application of Symbiotic Organisms Search Algorithm for Parameter Extraction of Solar Cell Models , 2018, Applied Sciences.

[14]  Aboul Ella Hassanien,et al.  A Chaotic Improved Artificial Bee Colony for Parameter Estimation of Photovoltaic Cells , 2017 .

[15]  Kang Li,et al.  An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models , 2014 .

[16]  Zhicong Chen,et al.  Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm , 2017 .

[17]  Sílvio Mariano,et al.  A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization , 2018 .

[18]  Jiangang Yao,et al.  A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models , 2018 .

[19]  Giuseppina Ciulla,et al.  A comparison of different one-diode models for the representation of I–V characteristic of a PV cell , 2014 .

[20]  Shu Ting Goh,et al.  Multi-dimension diode photovoltaic (PV) model for different PV cell technologies , 2014, 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE).

[21]  Kashif Ishaque,et al.  Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review , 2015 .

[22]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[23]  Haifeng Zhou,et al.  Application of Artificial Bee Colony in Model Parameter Identification of Solar Cells , 2015 .

[24]  Zhicong Chen,et al.  A Population Classification Evolution Algorithm for the Parameter Extraction of Solar Cell Models , 2016 .

[25]  Harish Kumar,et al.  Modeling of solar cell under different conditions by Ant Lion Optimizer with LambertW function , 2018, Appl. Soft Comput..

[26]  Diego Oliva,et al.  Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm , 2017 .

[27]  Yue Wang,et al.  An improved optimization technique for estimation of solar photovoltaic parameters , 2017 .

[28]  Mohamed Abd Elaziz,et al.  Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm , 2018, Energy Conversion and Management.

[29]  Jing Liang,et al.  Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models , 2018, Applied Energy.

[30]  Roberto Cárdenas,et al.  Experimental Parameter Extraction in the Single-Diode Photovoltaic Model via a Reduced-Space Search , 2017, IEEE Transactions on Industrial Electronics.

[31]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[32]  Ahmad Rezaee Jordehi,et al.  Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules , 2016 .

[33]  Bin Xu,et al.  Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation , 2018 .

[34]  Gianpaolo Vitale,et al.  Photovoltaic Sources: Modeling and Emulation , 2012 .

[35]  Lijun Wu,et al.  Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy , 2016 .

[36]  A. R. Jordehi Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules , 2018 .

[37]  Gang Yao,et al.  Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm , 2018, Solar Energy.

[38]  D. Werner,et al.  Wind Driven Optimization (WDO): A novel nature-inspired optimization algorithm and its application to electromagnetics , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[39]  Antonino Laudani,et al.  High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I–V curves by using reduced forms , 2014 .

[40]  Sirapat Chiewchanwattana,et al.  An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models , 2019, Renewable Energy.

[41]  Xin Wang,et al.  Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization , 2017 .

[42]  Yongchang Yu,et al.  Lambert W-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction , 2016 .

[43]  Mehdi Bigdeli,et al.  Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm , 2016 .

[44]  Jieming Ma,et al.  Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms , 2016 .

[45]  Nasrudin Abd Rahim,et al.  Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization , 2016 .

[46]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[47]  Hui Du,et al.  A Linear Identification of Diode Models from Single I-V Characteristics of PV Panels , 2015, IEEE Trans. Ind. Electron..

[48]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[49]  Amir Mohammad Beigi,et al.  Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms , 2018, Solar Energy.

[50]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[51]  F. Javier Toledo,et al.  Two-Step Linear Least-Squares Method For Photovoltaic Single-Diode Model Parameters Extraction , 2018, IEEE Transactions on Industrial Electronics.

[52]  Heng Wang,et al.  Parameter extraction of solar cell models using improved shuffled complex evolution algorithm , 2018, Energy Conversion and Management.

[53]  Q. Niu,et al.  A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells , 2014 .

[54]  Yu He,et al.  Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm , 2018, Energy Conversion and Management.

[55]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.

[56]  Montaser Abd El Sattar,et al.  New seven parameters model for amorphous silicon and thin film PV modules based on solar irradiance , 2016 .

[57]  Jianjun Hu,et al.  Performance comparison of exponential, Lambert W function and Special Trans function based single diode solar cell models , 2018, Energy Conversion and Management.

[58]  Giuseppe Marco Tina,et al.  Comparison of different metaheuristic algorithms for parameter identification of photovoltaic cell/module , 2013 .

[59]  Yize Sun,et al.  An improved explicit double-diode model of solar cells: Fitness verification and parameter extraction , 2018 .

[60]  Xu Chen,et al.  Parameters identification of photovoltaic models using an improved JAYA optimization algorithm , 2017 .

[61]  Qishuang Ma,et al.  Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing , 2017 .

[62]  Maurice Clerc,et al.  Confinements and Biases in Particle Swarm Optimisation , 2006 .

[63]  Rubiyah Yusof,et al.  Analytical modeling of partially shaded photovoltaic systems , 2013 .

[64]  Marco Mussetta,et al.  Metaheuristic Algorithm for Photovoltaic Parameters: Comparative Study and Prediction with a Firefly Algorithm , 2018 .

[65]  Alain K. Tossa,et al.  A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions , 2014 .

[66]  Zhile Yang,et al.  Multi-population techniques in nature inspired optimization algorithms: A comprehensive survey , 2019, Swarm Evol. Comput..

[67]  Souad Chebbi,et al.  Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches , 2018, Renewable and Sustainable Energy Reviews.

[68]  Kashif Ishaque,et al.  Simple, fast and accurate two-diode model for photovoltaic modules , 2011 .

[69]  Yong Wang,et al.  Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm , 2017 .

[70]  Ahmed Fathy,et al.  Parameter estimation of photovoltaic system using imperialist competitive algorithm , 2017 .

[71]  Can Berk Kalayci,et al.  A survey of swarm intelligence for portfolio optimization: Algorithms and applications , 2018, Swarm Evol. Comput..