Direction of arrival estimation of sparse rectangular array via two-dimensional continuous compressive sensing

In this paper, it is shown how 2-D continuous compressive sensing (CCS) is used to recovery the complete measurements of a uniform rectangular array from its sparse case. 2-D CCS is implemented by reweighted atomic norm minimization. Based on the recovered data covariance matrix, the 2-D directions of arrival (DOA) are estimated via the Vandermonde decomposition of Toeplitz-block-Toeplitz matrix. Further, we present an enhanced approach by enlarging the virtual aperture of a sparse rectangular array. This approach can estimate more targets than the conventional one. Some typical examples are used to show the performance of the proposed 2-D DOA estimation method.

[1]  C. Carathéodory,et al.  Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .

[2]  Pál Turán,et al.  Über den Zusammenhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten und Über den Picard—Landauschen Satz , 1970 .

[3]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[4]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  Randy L. Haupt,et al.  Thinned arrays using genetic algorithms , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[8]  Yingbo Hua,et al.  A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed dipoles , 1993 .

[9]  政子 鶴岡,et al.  1998 IEEE International Conference on SMCに参加して , 1998 .

[10]  Michael D. Zoltowski,et al.  Direction-finding with sparse rectangular dual-size spatial invariance array , 1998 .

[11]  L. Gurvits,et al.  Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.

[12]  J.F. Bohme,et al.  Eigenstructure-based azimuth and elevation estimation in sparse uniform rectangular arrays , 2002, Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002.

[13]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[14]  Z. Nie,et al.  Reducing the Number of Elements in a Linear Antenna Array by the Matrix Pencil Method , 2008, IEEE Transactions on Antennas and Propagation.

[15]  T. Engin Tuncer,et al.  Classical and Modern Direction-of-Arrival Estimation , 2009 .

[16]  A. Willsky,et al.  The Convex algebraic geometry of linear inverse problems , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[17]  A. Massa,et al.  Bayesian Compressive Sampling for Pattern Synthesis With Maximally Sparse Non-Uniform Linear Arrays , 2011, IEEE Transactions on Antennas and Propagation.

[18]  M. D'Urso,et al.  Maximally Sparse Arrays Via Sequential Convex Optimizations , 2012, IEEE Antennas and Wireless Propagation Letters.

[19]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[20]  Cishen Zhang,et al.  Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference , 2011, IEEE Transactions on Signal Processing.

[21]  Paolo Rocca,et al.  Bayesian Compressive Sensing as Applied to Directions-of-Arrival Estimation in Planar Arrays , 2013, J. Electr. Comput. Eng..

[22]  Shefeng Yan,et al.  2-D Unitary ESPRIT-Like Direction-of-Arrival (DOA) Estimation for Coherent Signals with a Uniform Rectangular Array , 2013, Sensors.

[23]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[24]  Yuejie Chi,et al.  Joint sparsity recovery for spectral compressed sensing , 2013, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[25]  Lihua Xie,et al.  Continuous compressed sensing with a single or multiple measurement vectors , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[26]  Andrea Massa,et al.  Sparsening Conformal Arrays Through a Versatile $BCS$-Based Method , 2014, IEEE Transactions on Antennas and Propagation.

[27]  Yonina C. Eldar,et al.  Direction of Arrival Estimation Using Co-Prime Arrays: A Super Resolution Viewpoint , 2013, IEEE Transactions on Signal Processing.

[28]  Cishen Zhang,et al.  A Discretization-Free Sparse and Parametric Approach for Linear Array Signal Processing , 2013, IEEE Transactions on Signal Processing.

[29]  Yuxin Chen,et al.  Compressive Two-Dimensional Harmonic Retrieval via Atomic Norm Minimization , 2015, IEEE Transactions on Signal Processing.

[30]  Lihua Xie,et al.  Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization , 2014, IEEE Transactions on Signal Processing.

[31]  Lihua Xie,et al.  Vandermonde Decomposition of Multilevel Toeplitz Matrices With Application to Multidimensional Super-Resolution , 2015, IEEE Transactions on Information Theory.