Direction of arrival estimation of sparse rectangular array via two-dimensional continuous compressive sensing
暂无分享,去创建一个
Xiaochuan Ma | Chengpeng Hao | Jincheng Lin | Xiaochuan Ma | C. Hao | Jincheng Lin | Li Jiang | Li Jiang
[1] C. Carathéodory,et al. Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .
[2] Pál Turán,et al. Über den Zusammenhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten und Über den Picard—Landauschen Satz , 1970 .
[3] V. Pisarenko. The Retrieval of Harmonics from a Covariance Function , 1973 .
[4] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[5] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[6] Thomas Kailath,et al. ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..
[7] Randy L. Haupt,et al. Thinned arrays using genetic algorithms , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.
[8] Yingbo Hua,et al. A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed dipoles , 1993 .
[9] 政子 鶴岡,et al. 1998 IEEE International Conference on SMCに参加して , 1998 .
[10] Michael D. Zoltowski,et al. Direction-finding with sparse rectangular dual-size spatial invariance array , 1998 .
[11] L. Gurvits,et al. Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.
[12] J.F. Bohme,et al. Eigenstructure-based azimuth and elevation estimation in sparse uniform rectangular arrays , 2002, Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002.
[13] Dmitry M. Malioutov,et al. A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.
[14] Z. Nie,et al. Reducing the Number of Elements in a Linear Antenna Array by the Matrix Pencil Method , 2008, IEEE Transactions on Antennas and Propagation.
[15] T. Engin Tuncer,et al. Classical and Modern Direction-of-Arrival Estimation , 2009 .
[16] A. Willsky,et al. The Convex algebraic geometry of linear inverse problems , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[17] A. Massa,et al. Bayesian Compressive Sampling for Pattern Synthesis With Maximally Sparse Non-Uniform Linear Arrays , 2011, IEEE Transactions on Antennas and Propagation.
[18] M. D'Urso,et al. Maximally Sparse Arrays Via Sequential Convex Optimizations , 2012, IEEE Antennas and Wireless Propagation Letters.
[19] Emmanuel J. Candès,et al. Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.
[20] Cishen Zhang,et al. Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference , 2011, IEEE Transactions on Signal Processing.
[21] Paolo Rocca,et al. Bayesian Compressive Sensing as Applied to Directions-of-Arrival Estimation in Planar Arrays , 2013, J. Electr. Comput. Eng..
[22] Shefeng Yan,et al. 2-D Unitary ESPRIT-Like Direction-of-Arrival (DOA) Estimation for Coherent Signals with a Uniform Rectangular Array , 2013, Sensors.
[23] Parikshit Shah,et al. Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.
[24] Yuejie Chi,et al. Joint sparsity recovery for spectral compressed sensing , 2013, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[25] Lihua Xie,et al. Continuous compressed sensing with a single or multiple measurement vectors , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).
[26] Andrea Massa,et al. Sparsening Conformal Arrays Through a Versatile $BCS$-Based Method , 2014, IEEE Transactions on Antennas and Propagation.
[27] Yonina C. Eldar,et al. Direction of Arrival Estimation Using Co-Prime Arrays: A Super Resolution Viewpoint , 2013, IEEE Transactions on Signal Processing.
[28] Cishen Zhang,et al. A Discretization-Free Sparse and Parametric Approach for Linear Array Signal Processing , 2013, IEEE Transactions on Signal Processing.
[29] Yuxin Chen,et al. Compressive Two-Dimensional Harmonic Retrieval via Atomic Norm Minimization , 2015, IEEE Transactions on Signal Processing.
[30] Lihua Xie,et al. Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization , 2014, IEEE Transactions on Signal Processing.
[31] Lihua Xie,et al. Vandermonde Decomposition of Multilevel Toeplitz Matrices With Application to Multidimensional Super-Resolution , 2015, IEEE Transactions on Information Theory.