Enhanced biosynthesis of bioactive abietane diterpenes by overexpressing AtDXS or AtDXR genes in Salvia sclarea hairy roots

[1]  J. Nodwell,et al.  Activating secondary metabolism with stress and chemicals , 2014, Journal of Industrial Microbiology & Biotechnology.

[2]  Guohui Ding,et al.  Transcriptome Analysis of Medicinal Plant Salvia miltiorrhiza and Identification of Genes Related to Tanshinone Biosynthesis , 2013, PloS one.

[3]  L. Wright,et al.  Arabidopsis J-Protein J20 Delivers the First Enzyme of the Plastidial Isoprenoid Pathway to Protein Quality Control[C][W] , 2013, Plant Cell.

[4]  J. Thevelein,et al.  Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. , 2013, The New phytologist.

[5]  J. Bohlmann,et al.  Gene Discovery of Modular Diterpene Metabolism in Nonmodel Systems1[W][OA] , 2013, Plant Physiology.

[6]  Natalia Dudareva,et al.  Biosynthesis, function and metabolic engineering of plant volatile organic compounds. , 2013, The New phytologist.

[7]  Min Chen,et al.  Enhancement of artemisinin biosynthesis by overexpressing dxr, cyp71av1 and cpr in the plants of Artemisia annua L. , 2012 .

[8]  Milen I Georgiev,et al.  Genetically transformed roots: from plant disease to biotechnological resource. , 2012, Trends in biotechnology.

[9]  Ana L. Wevar Oller,et al.  Hairy roots, their multiple applications and recent patents. , 2012, Recent patents on biotechnology.

[10]  J. Bohlmann,et al.  Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture , 2012, BMC Plant Biology.

[11]  S. Günther,et al.  Abietane diterpenes induce cytotoxic effects in human pancreatic cancer cell line MIA PaCa-2 through different modes of action. , 2012, Phytochemistry.

[12]  C. Frost,et al.  Marrubiin, a constituent of Leonotis leonurus, alleviates diabetic symptoms. , 2012, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[13]  P. Pantazis,et al.  The labdane diterpene sclareol (labd-14-ene-8, 13-diol) induces apoptosis in human tumor cell lines and suppression of tumor growth in vivo via a p53-independent mechanism of action. , 2011, European journal of pharmacology.

[14]  Jianbo Xiao,et al.  Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. , 2011, Metabolic engineering.

[15]  K. San,et al.  The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. , 2011, Metabolic engineering.

[16]  Andrew Lee,et al.  The skin cancer chemotherapeutic agent ingenol-3-angelate (PEP005) is a substrate for the epidermal multidrug transporter (ABCB1) and targets tumor vasculature. , 2010, Cancer research.

[17]  P. Lyu,et al.  Functional proteomic and structural insights into molecular targets related to the growth inhibitory effect of tanshinone IIA on HeLa cells , 2010, Proteomics.

[18]  M. Melzig,et al.  Plectranthus barbatus: A Review of Phytochemistry, Ethnobotanical Uses and Pharmacology – Part 2 , 2010, Planta medica.

[19]  Matthias Melzig2,et al.  Plectranthus barbatus: A Review of Phytochemistry, Ethnobotanical Uses and Pharmacology – Part 1 , 2010, Planta medica.

[20]  Jie Chen,et al.  Experimental study of the anti-cancer mechanism of tanshinone IIA against human breast cancer. , 2009, International journal of molecular medicine.

[21]  Mari L. Salmi,et al.  Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. , 2009, Journal of experimental botany.

[22]  P. León,et al.  The plastidial MEP pathway: unified nomenclature and resources. , 2008, Trends in plant science.

[23]  N. Xu,et al.  Tanshinone IIA, an isolated compound from Salvia miltiorrhiza Bunge, induces apoptosis in HeLa cells through mitotic arrest. , 2008, Life sciences.

[24]  E. Fukusaki,et al.  Overexpression of 1-Deoxy-D-xylulose-5-phosphate reductoisomerase gene in chloroplast contributes to increment of isoprenoid production. , 2008, Journal of bioscience and bioengineering.

[25]  Young-Soo Hong,et al.  Abietane diterpenes from Salvia miltiorrhiza inhibit the activation of hypoxia-inducible factor-1. , 2007, Journal of natural products.

[26]  H. Wysokińska,et al.  Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. , 2007, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[27]  J. Glazebrook,et al.  Transformation of agrobacterium using the freeze-thaw method. , 2006, CSH protocols.

[28]  M. Schalk,et al.  Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants , 2006, Nature Biotechnology.

[29]  I. Arrillaga,et al.  Up-Regulation of 1-Deoxy-d-Xylulose-5-Phosphate Synthase Enhances Production of Essential Oils in Transgenic Spike Lavender1 , 2006, Plant Physiology.

[30]  P. Hedden,et al.  Overexpression of a bacterial 1-deoxy-D-xylulose 5-phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network: implications for the control of the tuber life cycle. , 2006, Journal of experimental botany.

[31]  L. Carretero-Paulet,et al.  Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase , 2006, Plant Molecular Biology.

[32]  H. Wysokińska,et al.  Cytotoxic and Proapoptotic Activity of Diterpenoids from in vitro Cultivated Salvia sclarea Roots. Studies on the Leukemia Cell Lines , 2006, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[33]  G. Felton,et al.  Caterpillar Herbivory and Salivary Enzymes Decrease Transcript Levels of Medicago truncatula genes Encoding Early Enzymes in Terpenoid Biosynthesis , 2006, Plant Molecular Biology.

[34]  H. Wysokińska,et al.  Diterpenoids and triterpenoids in hairy roots of Salvia sclarea , 2006, Plant Cell, Tissue and Organ Culture.

[35]  J. Schnitzler,et al.  Diurnal and Seasonal Variation of Isoprene Biosynthesis-Related Genes in Grey Poplar Leaves1 , 2005, Plant Physiology.

[36]  H. Goodman,et al.  The Arabidopsis IspH Homolog Is Involved in the Plastid Nonmevalonate Pathway of Isoprenoid Biosynthesis , 2005, Plant Physiology.

[37]  M. Reichelt,et al.  The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  P. Fraser,et al.  Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. , 2004, Plant biotechnology journal.

[39]  M. Rodríguez-Concepcíon,et al.  Elucidation of the Methylerythritol Phosphate Pathway for Isoprenoid Biosynthesis in Bacteria and Plastids. A Metabolic Milestone Achieved through Genomics1 , 2002, Plant Physiology.

[40]  L. Carretero-Paulet,et al.  Expression and Molecular Analysis of the ArabidopsisDXR Gene Encoding 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase, the First Committed Enzyme of the 2-C-Methyl-d-Erythritol 4-Phosphate Pathway1 , 2002, Plant Physiology.

[41]  S. Jennewein,et al.  Taxol: biosynthesis, molecular genetics, and biotechnological applications , 2001, Applied Microbiology and Biotechnology.

[42]  L. Carretero-Paulet,et al.  1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. , 2001, The Plant journal : for cell and molecular biology.

[43]  R. Croteau,et al.  Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  P. León,et al.  1-Deoxy-d-xylulose-5-phosphate Synthase, a Limiting Enzyme for Plastidic Isoprenoid Biosynthesis in Plants* , 2001, The Journal of Biological Chemistry.

[45]  M. Clastre,et al.  Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. , 2000, Biochimica et biophysica acta.

[46]  B. M. Lange,et al.  Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  D. Rigel,et al.  Malignant melanoma: Prevention, early detection, and treatment in the 21st century , 2000, CA: a cancer journal for clinicians.

[48]  D. Strack,et al.  Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the 'yellow pigment' and other apocarotenoids. , 2000, The Plant journal : for cell and molecular biology.

[49]  B. M. Lange,et al.  A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Rohmer,et al.  Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G. Topçu,et al.  Diterpenoids from the roots of Salvia sclarea , 1997 .

[52]  H. Sahm,et al.  Glyceraldehyde 3-Phosphate and Pyruvate as Precursors of Isoprenic Units in an Alternative Non-mevalonate Pathway for Terpenoid Biosynthesis , 1996 .

[53]  L. Moore,et al.  Universal PCR primers for detection of phytopathogenic Agrobacterium strains , 1995, Applied and environmental microbiology.

[54]  G. Topçu,et al.  Terpenoids from Salvia sclarea. , 1994, Phytochemistry.

[55]  V. Dixit,et al.  The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. , 1992, The Journal of biological chemistry.

[56]  I Nicoletti,et al.  A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. , 1991, Journal of immunological methods.

[57]  T. Mosmann Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. , 1983, Journal of immunological methods.

[58]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .

[59]  J. Bohlmann,et al.  Gene Discovery of Modular Diterpene Metabolism in , 2013 .

[60]  T. Hasunuma,et al.  Metabolic engineering by plastid transformation as a strategy to modulate isoprenoid yield in plants. , 2010, Methods in molecular biology.

[61]  M. Mohammadi,et al.  Sclareol modulates the Treg intra-tumoral infiltrated cell and inhibits tumor growth in vivo. , 2010, Cellular immunology.

[62]  A. Gören,et al.  Biological Activity of Diterpenoids Isolated from Anatolian Lamiaceae Plants , 2007 .

[63]  I. Zimmer,et al.  Diurnal and Seasonal Variation of Isoprene Biosynthesis-Related Genes in Grey Poplar Leaves , 2005 .

[64]  J. Chappell Biochemistry and Molecular Biology of the Isoprenoid Biosynthetic Pathway in Plants , 1995 .

[65]  J. Doyle,et al.  A rapid total DNA preparation procedure for fresh plant tissue , 1990 .

[66]  J. Doyle,et al.  Isolation of plant DNA from fresh tissue , 1990 .

[67]  D. Hildebrand,et al.  Design and construction of a versatile system for the expression of foreign genes in plants. , 1987, Gene.