A fundamental relation between mass, SFR and metallicity in local and high redshift galaxies

We show that the mass-metallicity relation observed in the local universe is due to a more general relation between stellar mass M*, gas-phase metallicity and SFR. Local galaxies define a tight surface in this 3D space, the Fundamental Metallicity Relation (FMR), with a small residual dispersion of ~0.05 dex in metallicity, i.e, ~12%. At low stellar mass, metallicity decreases sharply with increasing SFR, while at high stellar mass, metallicity does not depend on SFR. High redshift galaxies, up to z~2.5 are found to follow the same FMR defined by local SDSS galaxies, with no indication of evolution. The evolution of the mass-metallicity relation observed up to z=2.5 is due to the fact that galaxies with progressively higher SFRs, and therefore lower metallicities, are selected at increasing redshifts, sampling different parts of the same FMR. By introducing the new quantity mu_alpha=log(M*)-alpha log(SFR), with alpha=0.32, we define a projection of the FMR that minimizes the metallicity scatter of local galaxies. The same quantity also cancels out any redshift evolution up to z~2.5, i.e, all galaxies have the same range of values of mu_0.32. At z>2.5, evolution of about 0.6 dex off the FMR is observed, with high-redshift galaxies showing lower metallicities. The existence of the FMR can be explained by the interplay of infall of pristine gas and outflow of enriched material. The former effect is responsible for the dependence of metallicity with SFR and is the dominant effect at high-redshift, while the latter introduces the dependence on stellar mass and dominates at low redshift. The combination of these two effects, together with the Schmidt-Kennicutt law, explains the shape of the FMR and the role of mu_0.32. The small metallicity scatter around the FMR supports the smooth infall scenario of gas accretion in the local universe.

[1]  James E. Larkin,et al.  THE PRESENCE OF WEAK ACTIVE GALACTIC NUCLEI IN HIGH REDSHIFT STAR-FORMING GALAXIES , 2010, 1001.5041.

[2]  D. Weinberg,et al.  The n ature of submillimetre galaxies in cosmological hydrodynamic simulations , 2009, 0909.4078.

[3]  A. Kravtsov,et al.  ON THE KENNICUTT–SCHMIDT RELATION OF LOW-METALLICITY HIGH-REDSHIFT GALAXIES , 2009, 0912.3005.

[4]  S. Borgani,et al.  Lyman alpha emitter evolution in the reionization epoch , 2009, 0907.0337.

[5]  D. Tucker,et al.  REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z ∼ 2 , 2009, 0906.2197.

[6]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[7]  L. Chemin,et al.  PHYSICAL CONDITIONS IN THE INTERSTELLAR MEDIUM OF INTENSELY STAR-FORMING GALAXIES AT REDSHIFT∼2 , 2009, 0902.2784.

[8]  F. Mannucci,et al.  LSD: Lyman-break galaxies Stellar populations and Dynamics – I. Mass, metallicity and gas at z∼ 3.1 , 2009, 0902.2398.

[9]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[10]  J. Wadsley,et al.  THE ROLE OF COLD FLOWS IN THE ASSEMBLY OF GALAXY DISKS , 2008, 0812.0007.

[11]  James E. Larkin,et al.  DYNAMICS OF GALACTIC DISKS AND MERGERS AT z ∼ 1.6: SPATIALLY RESOLVED SPECTROSCOPY WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS , 2008, 0810.5599.

[12]  K. Stanek,et al.  OUTLIERS FROM THE MASS–METALLICITY RELATION. II. A SAMPLE OF MASSIVE METAL-POOR GALAXIES FROM SDSS , 2008, 0809.0896.

[13]  S. Okamura,et al.  STAR FORMATION RATES AND METALLICITIES OF K-SELECTED STAR-FORMING GALAXIES AT z ∼ 2 , 2008, 0809.5100.

[14]  P. Hopkins,et al.  A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei , 2008, 0808.1227.

[15]  L. Cowie,et al.  Accepted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj AN INTEGRATED PICTURE OF STAR FORMATION, METALLICITY EVOLUTION, AND GALACTIC STELLAR MASS ASSEMBLY 1 , 2022 .

[16]  T. Mahoney,et al.  Pathways Through an Eclectic Universe , 2008 .

[17]  S. White,et al.  Effects of supernova feedback on the formation of galaxy discs , 2008, 0804.3795.

[18]  A. Heavens,et al.  The cosmic evolution of metallicity from the SDSS fossil record , 2008, 0804.3091.

[19]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[20]  J. Brinchmann,et al.  Metallicities and Physical Conditions in Star-forming Galaxies at z ~ 1.0-1.5 , 2008, 0801.1670.

[21]  Leiden,et al.  New insights into the stellar content and physical conditions of star-forming galaxies at z = 2-3 from spectral modelling , 2008, 0801.1678.

[22]  B. Oppenheimer,et al.  Mass, metal, and energy feedback in cosmological simulations , 2007, 0712.1827.

[23]  D. Erb Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A MODEL FOR STAR FORMATION, GAS FLOWS AND CHEMICAL EVOLUTION IN GALAXIES AT HIGH REDSHIFTS , 2022 .

[24]  S. Veilleux,et al.  The Oxygen Abundances of Luminous and Ultraluminous Infrared Galaxies , 2007, 0708.1766.

[25]  A. Cimatti,et al.  Dynamical Properties of z ~ 2 Star-forming Galaxies and a Universal Star Formation Relation , 2007, 0706.2656.

[26]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[27]  R. Davé,et al.  The origin of the galaxy mass-metallicity relation and implications for galactic outflows , 2007, 0704.3100.

[28]  K. Tassis,et al.  Scaling Relations of Dwarf Galaxies without Supernova-driven Winds , 2006, Proceedings of the International Astronomical Union.

[29]  E. Emsellem,et al.  CRAL-2006. Chemodynamics: From First Stars to Local Galaxies , 2007 .

[30]  P. Kroupa,et al.  A possible origin of the mass–metallicity relation of galaxies , 2006, astro-ph/0611723.

[31]  P. Tissera,et al.  Clues for the origin of the fundamental metallicity relations – I. The hierarchical building up of the structure , 2006, astro-ph/0609243.

[32]  Robert D. Gehrz,et al.  On Extending the Mass-Metallicity Relation of Galaxies by 2.5 Decades in Stellar Mass , 2006, astro-ph/0605036.

[33]  Simulations of Cosmic Chemical Enrichment , 2006, astro-ph/0604107.

[34]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[35]  J. Moustakas,et al.  ApJ, accepted Preprint typeset using L ATEX style emulateapj v. 6/22/04 OPTICAL STAR-FORMATION RATE INDICATORS , 2006 .

[36]  A. Coil,et al.  Chemical Abundances of DEEP2 Star-forming Galaxies at z~1.0-1.5 , 2005, astro-ph/0509102.

[37]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[38]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[39]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[40]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[41]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[42]  U. Nottingham,et al.  Stellar populations in local star-forming galaxies – II. Recent star formation properties and stellar masses , 2002, astro-ph/0209397.

[43]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[44]  University of British Columbia,et al.  Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies , 2002, astro-ph/0210454.

[45]  D. Garnett The Luminosity-Metallicity Relation, Effective Yields, and Metal Loss in Spiral and Irregular Galaxies , 2002, astro-ph/0209012.

[46]  S. Charlot,et al.  Nebular emission from star-forming galaxies , 2001, astro-ph/0101097.

[47]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[48]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[49]  T. Heckman,et al.  Ionized gas in the halos of edge-on starburst galaxies: Evidence for supernova-driven superwinds , 1996 .

[50]  M. Edmunds General constraints on the effect of gas flows in the chemical evolution of galaxies , 1990 .