Recent Advances in Germanium Quantum Well Structures - A New Modulation Mechanism for Silicon-Compatible Optics

Silicon technology increasingly can implement both electronics and optics for communications. The recent discovery of strong electroabsorption in Ge quantum wells on silicon may fill a key gap, allowing a merged technology for many applications.

[1]  David A. B. Miller,et al.  Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators , 2006 .

[2]  M. Aoki,et al.  InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective area MOCVD , 1993 .

[3]  A. Nemecek,et al.  Integrated BiCMOS p-i-n Photodetectors With High Bandwidth and High Responsivity , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  Doron Rubin,et al.  High Speed Metal–Oxide–Semiconductor Capacitor-Based Silicon Optical Modulators , 2006 .

[5]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[6]  M. Lipson,et al.  Compact Electro-Optic Modulators on a Silicon Chip , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[8]  D. Miller,et al.  Quadratic electro‐optic effect due to the quantum‐confined Stark effect in quantum wells , 1987 .

[9]  Large Electro-Optic Effect in Tensile Strained Ge-on-Si Films , 2006 .

[10]  J.S. Barton,et al.  40-Gb/s Series-Push-Pull Mach–Zehnder Transmitter on a Dual-Quantum-Well Integration Platform , 2006, IEEE Photonics Technology Letters.

[11]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[12]  D. Miller,et al.  Strong quantum-confined Stark effect in germanium quantum-well structures on silicon , 2005, Nature.

[13]  Miller,et al.  Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect. , 1986, Physical review. B, Condensed matter.

[14]  A. Knights,et al.  Silicon Photonics: An Introduction , 2004 .

[15]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  D. Miller Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[17]  J. Cunningham,et al.  Excitonic electroabsorption in extremely shallow quantum wells , 1990 .

[18]  W H Knox,et al.  How fast is excitonic electroabsorption? , 1990, Optics letters.

[19]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[20]  D. Miller,et al.  GaAs-AlGaAs multiquantum well reflection modulators grown on GaAs and silicon substrates , 1989, IEEE Photonics Technology Letters.

[21]  Wood,et al.  Electric field dependence of optical absorption near the band gap of quantum-well structures. , 1985, Physical review. B, Condensed matter.

[22]  Joe C. Campbell,et al.  21-GHz-Bandwidth Germanium-on-Silicon Photodiode Using Thin SiGe Buffer Layers , 2006, IEEE Journal of Selected Topics in Quantum Electronics.