The Forest Observation System, building a global reference dataset for remote sensing of forest biomass
暂无分享,去创建一个
Thales A. P. West | Luis C. Oliveira | S. Hubbell | W. Wanek | F. Kraxner | O. Phillips | M. d'Oliveira | R. Valbuena | R. Lucas | A. Shvidenko | S. Fritz | L. See | T. Killeen | D. Burslem | K. Scipal | Y. Malhi | J. Chave | S. Lewis | M. Réjou‐Méchain | L. Blanc | T. Feldpausch | A. Araujo-Murakami | J. Poulsen | A. Rozak | M. Silveira | V. Vos | R. Condit | S. Gourlet‐Fleury | C. Perger | T. Erwin | J. T. Woods | N. Higuchi | R. V. Martinez | L. Arroyo | C. Mendoza | R. Foster | J. Armston | U. Ilstedt | K. Hamer | J. Manzanera | A. García-Abril | S. Davies | L. Mazzei | A. Ruschel | N. Labrière | B. Sonké | E. Foli | H. Taedoumg | J. Vleminckx | H. Woell | N. Berry | D. Schepaschenko | J. Krejza | K. Stereńczak | R. Bałazy | M. Guedes | H. ter Steege | A. Mendoza | B. Marimon | R. Brienen | A. Alonso | M. Toledo | L. V. Gamarra | N. Lukina | A. Gornov | P. Bissiengou | P. Sist | P. Lakyda | B. Hérault | V. Wortel | T. Okuda | E. Rutishauser | M. Playfair | E. Vidal | L. Descroix | E. Sotta | M. Kanashiro | K. Rodney | C. Souza | E. H. Coronado | J. Licona | F. H. Susanty | Martin J. P. Sullivan | A. Cuni‐Sanchez | W. Hubau | S. Pietsch | F. Hofhansl | G. Derroire | James Singh | E. Tikhonova | H. Krisnawati | H. Memiaghe | J. Szatniewska | A. Karlsson | N. Ascarrunz | L. Krivobokov | L. Mukhortova | I. Lakyda | P. Ontikov | M. Shchepashchenko | O. Martynenko | A. Bilous | S. Bilous | V. Karminov | C. Bedeau | N. Shevchenko | K. Bobkova | M. Kuznetsov | A. Osipov | A. Aleinikov | C. Amani | C. Azevedo | T. Baker | T. Braslavskaya | D. Danilina | D. Del Castillo Torres | C. Dresel | M. D. Evdokimenko | J. Falck | M. Gornova | E. Gothard-Bassébé | V. Ivanov | Jean-Claude Konan Koffi | M. Konovalova | D. Lussetti | M. Matsala | R. Matyashuk | O. Moroziuk | S. Musa | V. Radchenko | L. Stonozhenko | O. Trefilova | S. Vasiliev | E. Vedrova | S. V. Verhovets | N. Vladimirova | F. K. Vozmitel | I. C. Zo-Bi | T. Yamada | B. M. Júnior | D. I. Nazimova | Z. S. Nur Hajar | K. Affum‐Baffoe | B. M. Junior
[1] Thales A. P. West,et al. The Forest Observation System, building a global reference dataset for remote sensing of forest biomass , 2019, Scientific Data.
[2] O. Phillips,et al. Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales , 2019, Surveys in Geophysics.
[3] Klaus Scipal,et al. Ground Data are Essential for Biomass Remote Sensing Missions , 2019, Surveys in Geophysics.
[4] Kuznetsov,et al. A global reference dataset for remote sensing of forest biomass. The Forest Observation System approach , 2019 .
[5] Nathan J B Kraft,et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. , 2019, Ecology letters.
[6] O. Phillips,et al. The persistence of carbon in the African forest understory , 2019, Nature Plants.
[7] J. Terborgh,et al. Compositional response of Amazon forests to climate change , 2018, Global change biology.
[8] B. R. Ramesh,et al. Pan‐tropical prediction of forest structure from the largest trees , 2018, Global Ecology and Biogeography.
[9] Klaus Scipal,et al. In Situ Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[10] F. Kraxner,et al. Improved Estimates of Biomass Expansion Factors for Russian Forests , 2018, Forests.
[11] Jean‐François Bastin,et al. Field methods for sampling tree height for tropical forest biomass estimation , 2018, Methods in ecology and evolution.
[12] A. Huth,et al. Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states , 2018 .
[13] D. R. Almeida,et al. Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation , 2017 .
[14] R. Primack,et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects , 2017, Nature Communications.
[15] J. Chave,et al. biomass: an r package for estimating above‐ground biomass and its uncertainty in tropical forests , 2017 .
[16] Steffen Fritz,et al. A dataset of forest biomass structure for Eurasia , 2017, Scientific Data.
[17] Kyle G. Dexter,et al. Seasonal drought limits tree species across the Neotropics , 2017 .
[18] M. Donoghue,et al. Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists. , 2017, Trends in ecology & evolution.
[19] A Alonso,et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition , 2017, Science.
[20] Sean C. Thomas,et al. Diversity and carbon storage across the tropical forest biome , 2017, Scientific Reports.
[21] Thales A. P. West,et al. Carbon recovery dynamics following disturbance by selective logging in Amazonian forests , 2016, eLife.
[22] A. Di Fiore,et al. Evolutionary heritage influences Amazon tree ecology , 2016, Proceedings of the Royal Society B: Biological Sciences.
[23] Filippo Bussotti,et al. Positive biodiversity-productivity relationship predominant in global forests , 2016, Science.
[24] Rob Marchant,et al. Land cover change and carbon emissions over 100 years in an African biodiversity hotspot , 2016, Global change biology.
[25] J. Terborgh,et al. Amazon forest response to repeated droughts , 2016 .
[26] Ke Zhang,et al. Variation in stem mortality rates determines patterns of above‐ground biomass in Amazonian forests: implications for dynamic global vegetation models , 2016, Global change biology.
[27] J. Terborgh,et al. Phylogenetic diversity of Amazonian tree communities , 2015 .
[28] J. Terborgh,et al. Estimating the global conservation status of more than 15,000 Amazonian tree species , 2015, Science Advances.
[29] Urs Wegmüller,et al. Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR , 2015 .
[30] E. Schmid,et al. Global Biomass Information: From Data Generation to Application , 2015 .
[31] Roberta E. Martin,et al. Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica , 2015, PloS one.
[32] Kalle Ruokolainen,et al. Hyperdominance in Amazonian forest carbon cycling , 2015, Nature Communications.
[33] J. Terborgh,et al. Long-term decline of the Amazon carbon sink , 2015, Nature.
[34] Norman A. Bourg,et al. CTFS‐ForestGEO: a worldwide network monitoring forests in an era of global change , 2015, Global change biology.
[35] David Kenfack,et al. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks , 2014 .
[36] W. Wanek,et al. Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica , 2014 .
[37] A. Simmons,et al. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy , 2014 .
[38] B. Nelson,et al. Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.
[39] J. Terborgh,et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites , 2014, Global ecology and biogeography : a journal of macroecology.
[40] J. Terborgh,et al. Fast demographic traits promote high diversification rates of Amazonian trees , 2014, Ecology letters.
[41] F. Rovero,et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics , 2013 .
[42] J. Terborgh,et al. Hyperdominance in the Amazonian Tree Flora , 2013, Science.
[43] Sean C. Thomas,et al. Above-ground biomass and structure of 260 African tropical forests , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.
[44] N. Pettorelli,et al. Essential Biodiversity Variables , 2013, Science.
[45] J. Terborgh,et al. Tree height integrated into pantropical forest biomass estimates , 2012 .
[46] R. B. Jackson,et al. A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.
[47] O. Phillips,et al. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data , 2011 .
[48] D. A. King,et al. Height-diameter allometry of tropical forest trees , 2010 .
[49] J. Chave,et al. Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .
[50] J. Terborgh,et al. Drought Sensitivity of the Amazon Rainforest , 2009, Science.
[51] Sean C. Thomas,et al. Increasing carbon storage in intact African tropical forests , 2009, Nature.
[52] A. Di Fiore,et al. Variation in wood density determines spatial patterns inAmazonian forest biomass , 2004 .
[53] O. Phillips,et al. Extinction risk from climate change , 2004, Nature.
[54] Stephen P. Hubbell,et al. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season , 2004, Journal of Tropical Ecology.
[55] O. Phillips,et al. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR) , 2002 .
[56] Phillips,et al. Changes in the carbon balance of tropical forests: evidence from long-term plots , 1998, Science.
[57] O. Phillips,et al. Dynamics and species richness of tropical rain forests. , 1994, Proceedings of the National Academy of Sciences of the United States of America.
[58] Thales A. P. West,et al. The Tropical managed Forests Observatory: a research network addressing the future of tropical logged forests , 2015 .
[59] Yadvinder Malhi,et al. Measuring tropical forest carbon allocation and cycling , 2015 .
[60] David A. Coomes,et al. Global wood density database , 2009 .