The Forest Observation System, building a global reference dataset for remote sensing of forest biomass

Thales A. P. West | Luis C. Oliveira | S. Hubbell | W. Wanek | F. Kraxner | O. Phillips | M. d'Oliveira | R. Valbuena | R. Lucas | A. Shvidenko | S. Fritz | L. See | T. Killeen | D. Burslem | K. Scipal | Y. Malhi | J. Chave | S. Lewis | M. Réjou‐Méchain | L. Blanc | T. Feldpausch | A. Araujo-Murakami | J. Poulsen | A. Rozak | M. Silveira | V. Vos | R. Condit | S. Gourlet‐Fleury | C. Perger | T. Erwin | J. T. Woods | N. Higuchi | R. V. Martinez | L. Arroyo | C. Mendoza | R. Foster | J. Armston | U. Ilstedt | K. Hamer | J. Manzanera | A. García-Abril | S. Davies | L. Mazzei | A. Ruschel | N. Labrière | B. Sonké | E. Foli | H. Taedoumg | J. Vleminckx | H. Woell | N. Berry | D. Schepaschenko | J. Krejza | K. Stereńczak | R. Bałazy | M. Guedes | H. ter Steege | A. Mendoza | B. Marimon | R. Brienen | A. Alonso | M. Toledo | L. V. Gamarra | N. Lukina | A. Gornov | P. Bissiengou | P. Sist | P. Lakyda | B. Hérault | V. Wortel | T. Okuda | E. Rutishauser | M. Playfair | E. Vidal | L. Descroix | E. Sotta | M. Kanashiro | K. Rodney | C. Souza | E. H. Coronado | J. Licona | F. H. Susanty | Martin J. P. Sullivan | A. Cuni‐Sanchez | W. Hubau | S. Pietsch | F. Hofhansl | G. Derroire | James Singh | E. Tikhonova | H. Krisnawati | H. Memiaghe | J. Szatniewska | A. Karlsson | N. Ascarrunz | L. Krivobokov | L. Mukhortova | I. Lakyda | P. Ontikov | M. Shchepashchenko | O. Martynenko | A. Bilous | S. Bilous | V. Karminov | C. Bedeau | N. Shevchenko | K. Bobkova | M. Kuznetsov | A. Osipov | A. Aleinikov | C. Amani | C. Azevedo | T. Baker | T. Braslavskaya | D. Danilina | D. Del Castillo Torres | C. Dresel | M. D. Evdokimenko | J. Falck | M. Gornova | E. Gothard-Bassébé | V. Ivanov | Jean-Claude Konan Koffi | M. Konovalova | D. Lussetti | M. Matsala | R. Matyashuk | O. Moroziuk | S. Musa | V. Radchenko | L. Stonozhenko | O. Trefilova | S. Vasiliev | E. Vedrova | S. V. Verhovets | N. Vladimirova | F. K. Vozmitel | I. C. Zo-Bi | T. Yamada | B. M. Júnior | D. I. Nazimova | Z. S. Nur Hajar | K. Affum‐Baffoe | B. M. Junior

[1]  Thales A. P. West,et al.  The Forest Observation System, building a global reference dataset for remote sensing of forest biomass , 2019, Scientific Data.

[2]  O. Phillips,et al.  Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales , 2019, Surveys in Geophysics.

[3]  Klaus Scipal,et al.  Ground Data are Essential for Biomass Remote Sensing Missions , 2019, Surveys in Geophysics.

[4]  Kuznetsov,et al.  A global reference dataset for remote sensing of forest biomass. The Forest Observation System approach , 2019 .

[5]  Nathan J B Kraft,et al.  Drier tropical forests are susceptible to functional changes in response to a long-term drought. , 2019, Ecology letters.

[6]  O. Phillips,et al.  The persistence of carbon in the African forest understory , 2019, Nature Plants.

[7]  J. Terborgh,et al.  Compositional response of Amazon forests to climate change , 2018, Global change biology.

[8]  B. R. Ramesh,et al.  Pan‐tropical prediction of forest structure from the largest trees , 2018, Global Ecology and Biogeography.

[9]  Klaus Scipal,et al.  In Situ Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[10]  F. Kraxner,et al.  Improved Estimates of Biomass Expansion Factors for Russian Forests , 2018, Forests.

[11]  Jean‐François Bastin,et al.  Field methods for sampling tree height for tropical forest biomass estimation , 2018, Methods in ecology and evolution.

[12]  A. Huth,et al.  Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states , 2018 .

[13]  D. R. Almeida,et al.  Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation , 2017 .

[14]  R. Primack,et al.  Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects , 2017, Nature Communications.

[15]  J. Chave,et al.  biomass: an r package for estimating above‐ground biomass and its uncertainty in tropical forests , 2017 .

[16]  Steffen Fritz,et al.  A dataset of forest biomass structure for Eurasia , 2017, Scientific Data.

[17]  Kyle G. Dexter,et al.  Seasonal drought limits tree species across the Neotropics , 2017 .

[18]  M. Donoghue,et al.  Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists. , 2017, Trends in ecology & evolution.

[19]  A Alonso,et al.  Persistent effects of pre-Columbian plant domestication on Amazonian forest composition , 2017, Science.

[20]  Sean C. Thomas,et al.  Diversity and carbon storage across the tropical forest biome , 2017, Scientific Reports.

[21]  Thales A. P. West,et al.  Carbon recovery dynamics following disturbance by selective logging in Amazonian forests , 2016, eLife.

[22]  A. Di Fiore,et al.  Evolutionary heritage influences Amazon tree ecology , 2016, Proceedings of the Royal Society B: Biological Sciences.

[23]  Filippo Bussotti,et al.  Positive biodiversity-productivity relationship predominant in global forests , 2016, Science.

[24]  Rob Marchant,et al.  Land cover change and carbon emissions over 100 years in an African biodiversity hotspot , 2016, Global change biology.

[25]  J. Terborgh,et al.  Amazon forest response to repeated droughts , 2016 .

[26]  Ke Zhang,et al.  Variation in stem mortality rates determines patterns of above‐ground biomass in Amazonian forests: implications for dynamic global vegetation models , 2016, Global change biology.

[27]  J. Terborgh,et al.  Phylogenetic diversity of Amazonian tree communities , 2015 .

[28]  J. Terborgh,et al.  Estimating the global conservation status of more than 15,000 Amazonian tree species , 2015, Science Advances.

[29]  Urs Wegmüller,et al.  Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR , 2015 .

[30]  E. Schmid,et al.  Global Biomass Information: From Data Generation to Application , 2015 .

[31]  Roberta E. Martin,et al.  Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica , 2015, PloS one.

[32]  Kalle Ruokolainen,et al.  Hyperdominance in Amazonian forest carbon cycling , 2015, Nature Communications.

[33]  J. Terborgh,et al.  Long-term decline of the Amazon carbon sink , 2015, Nature.

[34]  Norman A. Bourg,et al.  CTFS‐ForestGEO: a worldwide network monitoring forests in an era of global change , 2015, Global change biology.

[35]  David Kenfack,et al.  Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks , 2014 .

[36]  W. Wanek,et al.  Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica , 2014 .

[37]  A. Simmons,et al.  The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy , 2014 .

[38]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[39]  J. Terborgh,et al.  Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites , 2014, Global ecology and biogeography : a journal of macroecology.

[40]  J. Terborgh,et al.  Fast demographic traits promote high diversification rates of Amazonian trees , 2014, Ecology letters.

[41]  F. Rovero,et al.  Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics , 2013 .

[42]  J. Terborgh,et al.  Hyperdominance in the Amazonian Tree Flora , 2013, Science.

[43]  Sean C. Thomas,et al.  Above-ground biomass and structure of 260 African tropical forests , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  N. Pettorelli,et al.  Essential Biodiversity Variables , 2013, Science.

[45]  J. Terborgh,et al.  Tree height integrated into pantropical forest biomass estimates , 2012 .

[46]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[47]  O. Phillips,et al.  ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data , 2011 .

[48]  D. A. King,et al.  Height-diameter allometry of tropical forest trees , 2010 .

[49]  J. Chave,et al.  Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .

[50]  J. Terborgh,et al.  Drought Sensitivity of the Amazon Rainforest , 2009, Science.

[51]  Sean C. Thomas,et al.  Increasing carbon storage in intact African tropical forests , 2009, Nature.

[52]  A. Di Fiore,et al.  Variation in wood density determines spatial patterns inAmazonian forest biomass , 2004 .

[53]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[54]  Stephen P. Hubbell,et al.  Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season , 2004, Journal of Tropical Ecology.

[55]  O. Phillips,et al.  An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR) , 2002 .

[56]  Phillips,et al.  Changes in the carbon balance of tropical forests: evidence from long-term plots , 1998, Science.

[57]  O. Phillips,et al.  Dynamics and species richness of tropical rain forests. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Thales A. P. West,et al.  The Tropical managed Forests Observatory: a research network addressing the future of tropical logged forests , 2015 .

[59]  Yadvinder Malhi,et al.  Measuring tropical forest carbon allocation and cycling , 2015 .

[60]  David A. Coomes,et al.  Global wood density database , 2009 .