UltraPower: Powering Tangible & Wearable Devices with Focused Ultrasound

Wireless power transfer creates new opportunities for interaction with tangible and wearable devices, by freeing designers from the constraints of an integrated power source. We explore the use of focused ultrasound as a means of transferring power to a distal device, transforming passive props into dynamic active objects. We analyse the ability to transfer power from an ultrasound array commonly used for mid-air haptic feedback and investigate the practical challenges of ultrasonic power transfer (e.g., receiving and rectifying energy from sound waves). We also explore the ability to power electronic components and multimodal actuators such as lights, speakers and motors. Finally, we describe exemplar wearable and tangible device prototypes that are activated by UltraPower, illustrating the potential applications of this novel technology.

[1]  Kent Lyons,et al.  Shimmering Smartwatches: Exploring the Smartwatch Design Space , 2015, TEI.

[2]  Yang Zhang,et al.  Sozu: Self-Powered Radio Tags for Building-Scale Activity Sensing , 2019, UIST.

[3]  Stephen A. Brewster,et al.  Tactile Feedback for Above-Device Gesture Interfaces: Adding Touch to Touchless Interactions , 2014, ICMI.

[4]  Lokesh Dhakar,et al.  Overview of Energy Harvesting Technologies , 2017 .

[5]  Joseph A. Paradiso,et al.  NailO: Fingernails as an Input Surface , 2015, CHI.

[6]  Victor Farm-Guoo Tseng,et al.  Phased Array Focusing for Acoustic Wireless Power Transfer , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[7]  Y. Kanai,et al.  Impact of a wireless power transmission system using an ultrasonic air transducer for low-power mobile applications , 2003, IEEE Symposium on Ultrasonics, 2003.

[8]  Hiroyuki Shinoda,et al.  Non-contact Method for Producing Tactile Sensation Using Airborne Ultrasound , 2008, EuroHaptics.

[9]  Michael Beigl,et al.  Things that hover: interaction with tiny battery-less robots on desktop , 2011, CHI EA '11.

[10]  Yasutoshi Makino,et al.  Active touch perception produced by airborne ultrasonic haptic hologram , 2015, 2015 IEEE World Haptics Conference (WHC).

[11]  L. Dumitriu,et al.  On wireless power transfer , 2012, 2012 International Conference on Applied and Theoretical Electricity (ICATE).

[12]  Sriram Subramanian,et al.  Rendering volumetric haptic shapes in mid-air using ultrasound , 2014, ACM Trans. Graph..

[13]  Gregory D. Abowd,et al.  SPIN (Self-powered Paper Interfaces): Bridging Triboelectric Nanogenerator with Folding Paper Creases , 2020, TEI.

[14]  Fuminori Okuya,et al.  A Cuttable Wireless Power Transfer Sheet , 2018, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[15]  Emmanuel Pietriga,et al.  Passive yet Expressive TouchTokens , 2017, CHI.

[16]  Nitish V. Thakor,et al.  Wireless Power Transfer Strategies for Implantable Bioelectronics , 2017, IEEE Reviews in Biomedical Engineering.

[17]  Vladimir Leonov,et al.  Energy Harvesting for Self-Powered Wearable Devices , 2011 .

[18]  Susanne Boll,et al.  Tangible Apps Bracelet: Designing Modular Wrist-Worn Digital Jewellery for Multiple Purposes , 2016, Conference on Designing Interactive Systems.

[19]  Kening Zhu,et al.  AutoGami: a low-cost rapid prototyping toolkit for automated movable paper craft , 2013, CHI.

[20]  Daniel Jackson,et al.  Touchbugs: actuated tangibles on multi-touch tables , 2013, CHI.

[21]  Shwetak N. Patel,et al.  CASPER: capacitive serendipitous power transfer for through-body charging of multiple wearable devices , 2018, UbiComp.

[22]  Diego Martinez Plasencia,et al.  A volumetric display for visual, tactile and audio presentation using acoustic trapping , 2019, Nature.

[23]  Alexander Toet,et al.  Subjective User Experience and Performance with Active Tangibles on a Tabletop Interface , 2015, HCI.

[24]  Emmanuel Pietriga,et al.  TouchTokens: Guiding Touch Patterns with Passive Tokens , 2016, CHI.

[25]  Shakir Saat,et al.  A Development of Low-Power Acoustic Energy Transfer System Using Push-Pull Power Converter , 2014 .

[26]  Pier Paolo Valentini,et al.  Accuracy in fingertip tracking using Leap Motion Controller for interactive virtual applications , 2017 .

[27]  Sergi Jordà,et al.  The reacTable: exploring the synergy between live music performance and tabletop tangible interfaces , 2007, TEI.

[28]  Hiroshi Ishii,et al.  ambientROOM: integrating ambient media with architectural space , 1998, CHI Conference Summary.

[29]  Arka Majumdar,et al.  Charging a Smartphone Across a Room Using Lasers , 2018, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[30]  Jan O. Borchers,et al.  Off-Surface Tangibles: Exploring the Design Space of Midair Tangible Interaction , 2019, CHI Extended Abstracts.

[31]  Sriram Subramanian,et al.  Holographic acoustic elements for manipulation of levitated objects , 2015, Nature Communications.

[32]  Mike Y. Chen,et al.  TouchRing: subtle and always-available input using a multi-touch ring , 2016, MobileHCI Adjunct.

[33]  Bruce W. Drinkwater,et al.  Holographic acoustic tweezers , 2018, Proceedings of the National Academy of Sciences.

[34]  Hiroshi Ishii,et al.  Pinwheels: visualizing information flow in an architectural space , 2001, CHI Extended Abstracts.

[35]  Sriram Subramanian,et al.  LeviPath: Modular Acoustic Levitation for 3D Path Visualisations , 2015, CHI.

[36]  Hiroyuki Shinoda,et al.  HaptoMime: mid-air haptic interaction with a floating virtual screen , 2014, UIST.

[37]  Sriram Subramanian,et al.  Point-and-Shake: Selecting from Levitating Object Displays , 2018, CHI.

[38]  Amin Arbabian,et al.  System-Level Analysis of Far-Field Radio Frequency Power Delivery for mm-Sized Sensor Nodes , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[39]  Orestis Georgiou,et al.  User engagement for mid-air haptic interactions with digital signage , 2019, PerDis.

[40]  Yuichi Miyaji,et al.  Feasibility study on wireless power transfer for wearable devices , 2017, SEMWEB.

[41]  Sean White,et al.  Nenya: subtle and eyes-free mobile input with a magnetically-tracked finger ring , 2011, CHI.

[42]  G. Memoli,et al.  Acoustic levitation with optimized reflective metamaterials , 2020, Scientific Reports.

[43]  Joseph A. Paradiso,et al.  Rovables: Miniature On-Body Robots as Mobile Wearables , 2016, UIST.

[44]  Sriram Subramanian,et al.  UltraHaptics: multi-point mid-air haptic feedback for touch surfaces , 2013, UIST.

[45]  T G Leighton,et al.  Are some people suffering as a result of increasing mass exposure of the public to ultrasound in air? , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  J. C. Mankins,et al.  Space solar power programs and microwave wireless power transmission technology , 2002 .

[47]  Orestis Georgiou,et al.  How Many Wi-Fi APs Does it Take to Light a Lightbulb? , 2016, IEEE Access.

[48]  Bruce W. Drinkwater,et al.  Ultraino: An Open Phased-Array System for Narrowband Airborne Ultrasound Transmission , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[49]  Ian Oakley,et al.  Haptics for tangible interaction: a vibro-tactile prototype , 2011, Tangible and Embedded Interaction.

[50]  Qiongfeng Shi,et al.  MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices , 2016, Scientific Reports.

[51]  David R. Large,et al.  Exploring the Use of Mid-Air Ultrasonic Feedback to Enhance Automotive User Interfaces , 2018, AutomotiveUI.

[52]  Dong Sam Ha,et al.  A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits , 2017 .

[53]  Victor Farm-Guoo Tseng,et al.  Acoustic wireless power transfer with receiver array for enhanced performance , 2017, 2017 IEEE Wireless Power Transfer Conference (WPTC).

[54]  Sriram Subramanian,et al.  LeviProps: Animating Levitated Optimized Fabric Structures using Holographic Acoustic Tweezers , 2019, UIST.

[55]  Jie Liu,et al.  An energy harvesting wearable ring platform for gestureinput on surfaces , 2014, MobiSys.

[56]  Amin Arbabian,et al.  Wireless Power Transfer to Millimeter-Sized Nodes Using Airborne Ultrasound , 2017, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[57]  Jenshan Lin,et al.  Wireless Power Transmission: From Far Field to Near Field , 2013, Proceedings of the IEEE.

[58]  Thomas L. Hill,et al.  Acoustophoretic volumetric displays using a fast-moving levitated particle , 2019, Applied Physics Letters.

[59]  Hiroyuki Shinoda,et al.  Lateral Modulation of Midair Ultrasound Focus for Intensified Vibrotactile Stimuli , 2018, EuroHaptics.

[60]  Abbas Z. Kouzani,et al.  A Review on Miniaturized Ultrasonic Wireless Power Transfer to Implantable Medical Devices , 2019, IEEE Access.

[61]  Yoichi Ochiai,et al.  Holographic Whisper: Rendering Audible Sound Spots in Three-dimensional Space by Focusing Ultrasonic Waves , 2017, CHI.

[62]  Hui-Shyong Yeo,et al.  Project Zanzibar: A Portable and Flexible Tangible Interaction Platform , 2018, CHI.

[63]  Kasper Hornbæk,et al.  Tangible bots: interaction with active tangibles in tabletop interfaces , 2011, CHI.

[64]  Mike Fraser,et al.  PowerShake: Power Transfer Interactions for Mobile Devices , 2016, CHI.

[65]  Shigeru Shimamoto,et al.  Design of Ultrasonic Wireless Power Transfer System , 2019, 2019 IEEE Globecom Workshops (GC Wkshps).

[66]  Takeshi Naemura,et al.  Bloxels: glowing blocks as volumetric pixels , 2009, SIGGRAPH '09.

[67]  Euan Freeman,et al.  Tangible Interactions with Acoustic Levitation , 2019, CHI Extended Abstracts.

[68]  Masaaki Fukumoto,et al.  FluxPaper: Reinventing Paper with Dynamic Actuation Powered by Magnetic Flux , 2015, CHI.

[69]  Lajos Hanzo,et al.  Intelligent Reflecting Surface Aided MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer , 2019, IEEE Journal on Selected Areas in Communications.

[70]  Jan O. Borchers,et al.  Madgets: actuating widgets on interactive tabletops , 2010, UIST.

[71]  Sriram Subramanian,et al.  Using Spatiotemporal Modulation to Draw Tactile Patterns in Mid-Air , 2018, EuroHaptics.

[72]  Yasutoshi Makino,et al.  Haptic Tracing of Midair Linear Trajectories Presented by Ultrasound Bessel Beams , 2018, EuroHaptics.

[73]  Sebastian Boring,et al.  Magnetips: Combining Fingertip Tracking and Haptic Feedback for Around-Device Interaction , 2019, CHI.

[74]  Stephen A. Brewster,et al.  Enhancing physical objects with actuated levitating particles , 2019, PerDis.

[75]  Michael Haller,et al.  Geckos: combining magnets and pressure images to enable new tangible-object design and interaction , 2011, CHI.

[76]  Christopher J. Plack,et al.  Effects of High-Intensity Airborne Ultrasound Exposure on Behavioural and Electrophysiological Measures of Auditory Function , 2019, Acta Acustica united with Acustica.

[77]  Orestis Georgiou,et al.  Levi-loop: A Mid-Air Gesture Controlled Levitating Particle Game , 2020, CHI Extended Abstracts.